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ABSTRACT
Musicians, audio engineers and producers often make use of
common timbral adjectives to describe musical signals and
transformations. However, the subjective nature of these
terms, and the variability with respect to musical context of-
ten leads to inconsistencies in their definition. In this study,
a model is proposed for controlling an equaliser by navigat-
ing clusters of datapoints, which represent grouped param-
eter settings with the same timbral description. The asso-
ciated interface allows users to identify the nearest cluster
to their current parameter setting and recommends changes
based on its relationship to a cluster centroid. To do this,
we apply dimensionality reduction to a dataset of equaliser
curves described as warm and bright using a stacked autoen-
coder, then group the entries using an agglomerative clus-
tering algorithm with a coherence-based distance criterion.
To test the efficacy of the system, we implement listening
tests and show that subjects are able to match datapoints
to their respective sub-representations with 93.75% mean
accuracy.
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1. MUSICAL TIMBRE
The study of perceived musical timbre has been widely re-
searched [9, 10], often in relation to a vocabulary of de-
scriptive terms [25, 21]. These adjectives are commonly
used to describe the timbre of musical signals at various
points in the production process, from performance using
musical instruments [8], to the application of audio effects
[5, 27], and audio mastering [24]. A common methodology
is to identify underlying correlations between statistical au-
dio features and specific descriptive terms [1], often when
measured in some reduced dimensionality subspace.

A recent trend in timbral research has been to incorpo-
rate crowd-sourced data, collected using a medium such as
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the web [5, 23, 22], or through digital audio workstation
plugins [26]. This allows for large databases of adjectives
to be used in music production, thus bridging the gap be-
tween amateurs and experienced producers by identifying
common statistical properties of terms within a shared vo-
cabulary. This contributes to a range of semantically driven
audio processing techniques such as spectral morphing [3,
30, 4], additive synthesis [31], and psychoacoustic timbral
modification [11, 18].

1.1 Audio Equalisation and Existing Interfaces
In this study, we explore the use of descriptive terms in
the process of audio equalisation. Equalisation [29] is one
of the most widely used audio effects in sound engineering,
allowing a user to apply gain to multiple frequency bands
concurrently. Semantic audio applications tend to address
the problem of creative equalisation, such as enabling a user
to match or retrieve a desired spectral envelope. However,
corrective equalisation is also an active area of research,
such as detecting and attenuating problematic frequencies
in a live environment [6].

As equalisation is such a prominent aspect of the sound
production process, a number of systems have been devel-
oped to facilitate the creative process. SubjEQt [16] and
2DEQ [19] for example, both manipulate parameter spaces
of an equaliser by allowing the user to navigate a reduced
dimensionality space. Here, the parameter-space represen-
tations of a vocabulary of adjectives is either determined by
the researcher, or a small number of external samples. On a
larger scale, SocialEQ [5], retrieves timbral descriptions by
crowdsourcing user-inputs from a web interface. Here, the
system is able to learn equalisation curves from a subject’s
evaluation of a set of audio samples. Finally, the SAFE EQ
[27, 28] presents crowdsourced audio effects data through
a plugin interface with a reduced-dimensionality parameter
space, allowing users to navigate a subset of adjectives using
a 2-dimensional controller.

In all of the aforementioned systems, the assumption is
that subjects exhibit significant agreement towards a sta-
tistical representation of a set of descriptive terms. This
however tends not to be the case in some instances [7]. In
this study, we show that terms often have various interpre-
tations or sub-representations, leading to several clusters
being attributed to a single term. This could be due to an
external factor such as the instrument, genre or mood of
the audio signal, or to multiple collective interpretations of
a descriptor. We use these sub-representations to provide an
interface that allows users to navigate the various clusters of
a single term, whilst providing recommendations based on
their proximity to a cluster’s centroid. The system provides
musicians and audio engineers with alternative parameter
settings for given tasks. This allows experienced users to
explore new creative directions in music production, and
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provides novice users with an interface to intuitively con-
trol complex parameter spaces.

2. METHODOLOGY
To build the interface, we first collect a dataset of adjectives,
which describe sounds processed using an equaliser. We
then build a model which reduces the dimensionality of the
parameter space, then applies clustering to identify sub-
representations of individual descriptors. Using the model,
we develop an interface that allows users to navigate the
space, based on recommended cluster centroids. Finally, we
evaluate the system using subjective listening tests.

2.1 Dataset
To build the system, we extract the two most common tim-
bral adjectives (warm and bright) from a large set of an-
notated audio effect settings, collected through the SAFE
Project1 [26]. In total 900 instances were collected from a
Digital Audio Workstation plugin, across a range of musical
instruments and genres. These terms are amongst the most
widely researched in the field [3, 4, 31].

Each entry into the dataset comprises 13 parameter states,
taken from a parametric EQ, a wide range of spectral and
temporal audio features taken before and after the process-
ing has been applied, user metadata, and a description of
the sound transformation. The equaliser used to collect the
data cascades five biquad filters in series. These are two
shelving filters for low and high frequency bands, and three
peaking filters. The peaking filters allow for the parametri-
sation of gain, centre frequency and bandwidth, while the
shelving filters allow for adjustment of the gain and centre
frequency values. For this study, we discard audio features
and focus on modelling the equalisation curves via their re-
spective filter parameters.

2.2 Objective Evaluation
To optimise the parameters in the model and to evaluate
the effectiveness of various aspects, we apply objective met-
rics to the data. To identify the degree to which natural
clusters exist within the low-dimensional representation of
the dataset, we measure spatial randomness in the data us-
ing the Hopkins Statistic [17, 13]. Here, p points (Set 1 ),
distributed randomly in the low-dimensional space, are gen-
erated and p points (Set 2 ) from the existing dataset are
sampled. The distance of the points is then calculated in
both Set 1 and Set 2 to their nearest neighbour, where dr
are the nearest neighbour distances of the sampled points
and di are the nearest neighbour distances of the gener-
ated points. Calculation of the Hopkins statistic is shown
in Equation 1:

H =

∑p
i=1 di∑p

i=1 dr +
∑p

i=1 di
(1)

Similarly, to evaluate the parameterisation of sub-repre-
sentations after hierarchical clustering has been applied, we
measure the cophenetic correlation. This can be performed
by evaluating the cophenetic distance matrices of the clus-
tering algorithm, since dendrograms are graphical represen-
tation of a cophenetic matrix [15, 20]. To calculate the
cophenetic correlation let x(i, j) be the Euclidean distance
between points i and j, and d(i, j) the distance of the two
points in the dendrogram, i.e height at which i and j are
first joined. Then by letting x and d be the average values
of x(i, j) and d(i, j) respectively, the cophenetic correlation
c is calculated using Equation 2:

1http://www.semanticaudio.co.uk

c =

∑
i<j(x(i, j)− x)(d(i, j)− d)√

[
∑

i<j(x(i, j)− x)2][
∑

i<j(d(i, j)− d)2]
(2)

2.3 Subjective Evaluation
To evaluate the extent to which the system is able to find co-
herent sub-representations, we implement a Multiple Stim-
uli with Hidden Reference and Anchor (MUSHRA) test,
using the Web Audio Evaluation Toolbox [14]. Subjects
were asked to rank the acoustic similarity of a reference
sound to other versions of the same sound, processed with
randomised equalisation curves from clusters found by the
system. Our hypothesis is that sounds which are processed
with curves from the same sub-representation should be
perceptually more similar than curves from different clus-
ters. For each trial, two recordings of electric guitars were
used, one performed in a blues style and one performed in
a metal style, and after processing, the audio samples were
normalised in order to prevent variation due to differences
in overall level. The number of samples presented at any
one time during the experiment is based on the resulting
number of clusters for each term (warm and bright). A
similarity matrix of distance vectors from each reference
audio sample is constructed. In total, 20 subjects partici-
pated in the listening tests, with varying levels (0-5 years)
of professional audio production experience. All subjects
had normal hearing and were aged between 18-40.

3. MODEL OVERVIEW
The model, as shown in Figure 1, projects a high-dimensional
dataset (EQ parameters) into a low-dimensional space us-
ing a Stacked Autoencoder (SAe). Clustering is applied to
the data to identify salient sub-representations within each
descriptor using the agglomerative clustering algorithm de-
scribed in Section 3.1. Users are then able to navigate the
space, where the system will recommend parameter settings
by maximising the coherence between the user-input and
each of the cluster centroids. Finally, a 13-dimensional pa-
rameter array is reconstructed from the 2-dimensional in-
put.

The SAe model [12] is used (as in [27, 28]) to project
data onto a low-dimensional subspace by learning a low-
dimensional representation of a vector of input features us-
ing a neural network architecture. This allows us to model
complex relationships between and high-and-low dimensional
spaces, and to approximate parameter settings from low-
dimensional inputs using the SAe’s decoder layers. We im-
plement the system using the Theano Python Library [2].
To accurately train the model, the EQ data is normalised
and rescaled during the decoding process.

3.1 Coherence-based Hierarchical Clustering
We implement a variation of the hierarchical clustering al-
gorithm, which aims to cluster data-points based on their
spectral representations. Once the instances have been sep-
arated into clusters, new input parameters will be measured
against the resulting cluster centroids using the same crite-
rion, with the system then providing guidance in achieving
the sub-representation most closely related to the input.
This method allows the system to take into account not
only the relationship in low-dimensional space, but also the
high-dimensional parameters of the EQ.

In order to apply hierarchical clustering to the frequency
bins of the EQ curve, a modified distance metric based on
coherence is implemented. As defined in Eq 3, Gab(f) is
the cross-spectral density between the equalisation curve a
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Figure 1: Block Diagram of the Proposed Model

and b, where Gaa(f) and Gbb(f) is the spectral density of
the a and b curves respectively. A distance matrix is con-
structed by finding the pairwise coherence measurements
between all frequency bins of the reconstructed EQ param-
eters, the clusters are computed sequentially, and applied to
the low-dimensional map. Using this method it is expected
that the resulting groups will share characteristics based
on a criterion that identifies the level of similarity between
frequency distributions, rather than the distribution of the
points in the low-dimensional space. The resulting clusters
are depicted in Figures 2 and 3.

Cab(f) =
|Gab(f)|2

Gaa(f)Gbb(f)
(3)
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Figure 2: Resulting Clusters for the Bright descriptor
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Figure 3: Resulting Clusters for the Warm descriptor

4. INTERFACE
The interface (shown in Figure 4) incorporates a 2 dimen-
sional subspace with a 5-band parametric EQ2, where set-
tings are recommended to the user (the white line) based
on the proximity of the existing curve (the blue line) to the
cluster centroid (shown in 2-dimensions on the right hand
side of the figure) using the coherence metric discussed in
section 3.1. The low-dimensional map is computed when the
interface is initialised, and the recommendation will change
when the coherence with the current cluster centroid is no
longer minimal.

Equalisation curve recommendations are presented through
the high-and-low-dimensional interfaces concurrently, how-
ever due to the nonlinear mapping between the two spaces,
the relationship between the two may be unclear. This is
due to several correlated parameters being loaded onto a
small number dimensions. This can make controlling the
sound timbre intuitive as users can navigate the clusters
in 2-dimensions, and the parameters will quantise to the
nearest cluster centroid. Users of the effect can control the
number of clusters selected by the algorithm, using a single
threshold parameter. A high threshold will result in a low
number of clusters, while a low threshold will provide more
sub-representations.

5. RESULTS
5.1 Clustering Tendency
The Hopkins Statistic will produce a result from 0 to 1,
where 1 is indicative of a highly clustered dataset, and 0
suggests the data points are uniformly distributed [17]. For
our data, the equalisation curves described as bright exhibit
a score of 0.544 with a standard deviation of 0.027 and the
equalisation curves described as warm exhibit a score of
0.561 with a standard deviation of 0.043. This suggests that
natural clusters may exist in the data, although clusters may
be diffused and boundaries may be overlapping.

5.2 Parameter Selection
We construct linkage matrices based on the frequency bins
of each point in the low-dimensional space and evaluate
their cophenetic correlation. Table 1 shows that for the
bright descriptor, the average linkage criterion is the most
suitable, with centroid, ward and complete linkages exhibit-
ing slightly less accurate measurements. Similarly, median,
weighted and single linkage score perform less favourably.
This is similar to the warm descriptor, with the average
linkage criterion scoring the highest and the centroid method
performing less favourably. Similarly, weighted, complete
and median linkages display significantly less accurate scores
and single linkage achieves a significantly lower score. These
results are also in accordance with the results of [20], where
average and centroid linkages were the most appropriate for
a variety of artificially generated datasets.

To select the model’s hyperparameters, we apply a hier-
archical clustering process, iterating the number of clusters

2Based on PyEQ: https://github.com/tmwoz/pyEQ
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Figure 4: The user interface of the equaliser, with the high-dimensional parameter space on the left, and the low-dimensional
space on the right. The red diamond on the left illustrates the position within the clustered sub-representation and the white
line on the frequency analyser represents the recommended equaliser curve corresponding with the closest centroid.

Linkage Bright
Cophenetic
Correlation

Warm
Cophenetic
Correlation

Single 0.320214 0.522341
Complete 0.862697 0.685418
Average 0.878668 0.812211
Weighted 0.800794 0.703954
Centroid 0.870976 0.811222
Median 0.846046 0.682768
Ward 0.862679 0.675793

Table 1: Comparison of the cophenetic correlation for both
descriptors across seven different linkage options

(Ncl) each time from 2-100. On each iteration, the coher-
ence between the cluster centroids is measured and Ncl is
accepted once the coherence between 2 clusters exceeds a
threshold. We chose this method as an alternative to the
commonly used inconsistency approach to cluster identifica-
tion as it produces a varying value for Ncl when the global
depth parameter is varied. The threshold is empirically set
to +0.7, which generally signifies a strong positive correla-
tion. Sequentially a value of 1 is assigned if a pair has a
coherence greater than +0.7, and 0 otherwise. This pro-
cess results in a percentage measurement of the correlation
between all centroids.

The optimal value of Ncl for each descriptor is then con-
sidered to be the highest number of clusters in which all
pairwise correlations fall below +0.7. We find that, af-
ter the optimisation process, Ncl = 5 for equaliser curves
described as bright, and Ncl = 3 for equaliser curves de-
scribed as warm. Their corresponding coherence matrices
are illustrated in Figures 5a and 5b, and the resulting sub-
representations are presented as mean equalisation curves
in Figures 6a and 6b.

5.3 Subjective Evaluation
The reconstructed equaliser curves are applied to 2 audio
samples, a blues guitar and metal guitar, 5 of which are
bright and 3 of which are warm (i.e. one from each sub-
representation). This results in a total of 16 samples, which
were presented to each participant. The listening tests show
that all participants are able to identify the reference. In
the case of warm for both audio samples, subjects have
predominantly allocated the audio sample to the predicted
cluster. For the bright descriptor, the subjects allocate
equaliser curves to the predicted cluster centroids for the
metal guitar sample, with a small number of misclassifica-
tions (see Figure 7b). However, for the blues guitar sample,

(a) (b)

Figure 5: Coherence distance Matrix for (a) Warm and
(b) Bright descriptors showing coherence between clustered
sub-representations

cluster differentiation appears to be slightly harder, with
subjects allocating the correct sample in four out of the
five tests, bringing the total percentage of correct identifi-
cation to 93.75%. While this is not a bad score, the ratings
that subjects provided display a high degree of similarity, in
most cases, between at least three samples, as is displayed
in Figure 7a.

This result is not unexpected, as can be deduced from
Figure 5b, where comparisons of equaliser curves are able
to achieve scores between +0.66 to +0.695, while the warm
descriptor displays more diverse sub-representations, as dis-
played in Figure 5a. These figures show that the warm
equaliser curves are sufficiently different for subjects to de-
tect differences, but this may not hold true for the bright
sub-representations.

To measure the confidence of the test participants, the
standard deviation of subjects’ responses is calculated. For
the warm descriptor samples (Figures 7c and 7d), the cor-
rect response also displays the lowest standard deviation
value, meaning that the subjects were more confident of
their responses. However, the same behaviour is not dis-
played for the bright descriptor. For the blues guitar (Fig-
ure 7a), subjects exhibited the lowest standard deviation
values, on the correct answers, for two of the five tests, the
same holds true for the metal samples (Figure 7b). There-
fore it can be said that the subjects displayed less certainty
for their choices on the bright descriptor tests.

To evaluate the extent to which the perceived distances
between the sub-representations is preserved in the cluster-
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(a)

(b)

Figure 6: Resulting sub-representations for (a) Warm and
(b) Bright descriptors showing coherence between clustered
sub-representations.

ing procedure, we measure the Spearman (rank) correlation
between the coherence distance matrix and the subjective
responses. For the warm descriptor, a correlation of 0.83 is
exhibited and for the bright descriptor a correlation of 0.79
is exhibited. This suggests that the interface is able to clus-
ter equalisation curves effectively, preserving a perceptually
relevant distance within and between clusters.

6. CONCLUSION
We present a system for the navigation of sub-representations
within timbral descriptions of equaliser curves. From the
listening test results it is clear that the interface is able to
cluster samples into perceptually relevant groups, and can
provide recommended settings based on a user’s input. We
evaluate the system using two descriptors, warm and bright,
and find that a different number of clusters form for each
term. For the warm descriptor, the subjects are always able
to identify the correct sub-representation when presented
with equaliser curves from each cluster, and are consistent
in their responses across two audio samples from different
genres. However, for the bright descriptor, subjects are able
to correctly allocate the equaliser curve to the correspond-
ing sub-representation with 90% accuracy (93.75% across
both terms). In this case, the number of correct allocations

varies between the audio samples, and they are not consis-
tent in their responses. This could be because the warm
descriptor is has a lower number of clusters (3), allowing
for more variability between sub-representations, whereas
the bright descriptor has 5, which may potentially be too
high for significant perceived variance. The proposed sys-
tem is able to aid the creative process of music production,
by providing alternative representations of described musi-
cal timbre. This may lower boundaries to entry for novice
users, and will provide new expressive functionality for ex-
pert users.
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