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ABSTRACT
To build electronic musical instruments, a mapping between
the real-time audio processing software and the physical
controllers is required. Different strategies of mapping were
developed and discussed within the NIME community to
improve musical expression in live performances. This pa-
per discusses an interface focussed instrument design ap-
proach, which starts from the physical controller and its
functionality. From this definition, the required, underlying
software instrument is derived. A proof of concept is imple-
mented as a framework for effect instruments. This frame-
work comprises a library of real-time effects for Csound,
a proposition for a JSON-based mapping format, and a
mapping-to-instrument converter that outputs Csound in-
strument files. Advantages, limitations and possible future
extensions are discussed.
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1. INTRODUCTION
In contrast to sound production on acoustic instruments
where musicians have to use finger actions e.g. on the pi-
ano [7] or apply blowing pressure like on the clarinet [5]
to produce a sound, electronic instruments do not require
direct player actions for sound production. Nevertheless,
electronic instruments, based on analogue circuits mostly
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provide knobs and switches on a front panel to let the per-
former adjust parameters in the circuit to modify the sound.
For example, this is similar to the function of clarinet keys
that can be used to modify the pitch of the instrument [9].

When building electronic instruments with software, a
common approach is using a Music Programming System
(MPS) (e.g. Csound, PureData, Chuck, SuperCollider) [14].
Most MPSs make use of the unit generator principle. Unit
generators are modules that contain digital signal process-
ing (DSP) functions and the MPS allows the user to quickly
combine these by either using a graphical or a text-based
user interface.

For live electronics, hardware controllers are required to
let performers physically interact with a software instru-
ment on stage. A variety of innovative physical controllers
can be found in the NIME Proceedings [12] e.g. full body
tracking suits [8] or reductionist one knob interfaces [4].

Different methods of routing the sensed controller values
to the arguments of a software instrument are discussed in-
tensively in the NIME community and are referred to as
the mapping problem [11]. During the years, different ap-
proaches were presented ranging from complex mapping li-
braries (e.g. the MnM toolbox [2] for Max/Msp, the Moda-
lity toolkit [1] for SuperCollider) to self learning tools based
on different methods of machine learning [6, 13].

For the COSMO project, we designed a framework around
the Raspberry Pi (RPi) to build Csound based instruments
as standalone hardware devices [10]1. The hardware frame-
work comprises a custom designed shield for the RPi to con-
nect up to 8 analogue controller inputs, 8 on/off switches
and 8 LEDs, as well as a stereo analogue dry/wet circuit
with true bypass if used as an effect processor. More than 20
COSMO hardware instruments were built in three workshop
sessions held during the last year, with participants from
different backgrounds (e.g. musicians, composers, artists,
programmers, engineers). On the software side, we provide
a pre-configured operating system for the RPi with example
Csound effect instruments (details in Section 3.1, Table 1).

1http://cosmoproject.github.io
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Figure 1: Schematic of an interface focussed instrument design procedure. The left box (black) shows the
required user actions for designing the instrument, the middle and right box (grey) show the underlying
software implementation.

Figure 2: Photos taken during the workshops, while
participants design their layout for the front panel,
either on paper (top left) or on the enclosure, by
arranging the caps of knobs.

2. MOTIVATION AND CONCEPT
During the workshops, all participants were encouraged to
design the front panel of their COSMO instrument them-
selves (see Figure 2 and 3). We observed that they placed
each controller with a specific intent for what it should con-
trol in the sound, even before they thought about any un-
derlying Csound software instrument. So the design and
layout of their controllers, to some extent, determined what
the Csound instrument should do.

Based on this observation, we aim to design a software
framework which would allow users to create a software in-
strument simply by mapping controllers to high level DSP
building blocks. This integrates the interface design, sound
generator design and mapping into one fluid process and
thereby liberating the users from the task of DSP program-
ming in Csound. In that way performers have a more holis-
tic musical perspective throughout the entire instrument
design process.

Figure 1 gives an overview of the three step procedure
starting with the interface design by the user, followed by an
automated validation process and an automated generation
of the underlying software instrument. An approach we
describe as interface focussed instrument design.

Figure 3: Example of finished designs for COSMO
boxes which originated from the project.

3. IMPLEMENTATION
Based on the idea that the user will specify the controls re-
quired to shape the sound, we setup a software environment
that a) provides an open and expandable library of Csound
effects (Section 3.1), b) uses a common file format (JSON)
to store the controller mappings (Section 3.2), and c) pro-
vides a translator tool from the mapping file to a Csound
instrument (Section 3.3).

3.1 Effects Library
Csound contains hundreds of unit generators called ’op-
codes’, which generate or modify sound (e.g. oscillators,
filters, envelopes, sample players, and more). Users can
combine opcodes for more advanced signal processing by
writing code in Csound language. Blocks of Csound code
can be stored as ‘user-defined opcodes’ (UDOs [15]) and
reused.

For the COSMO workshops, the participants were not
required to have experience in Csound programming, so a
simplified, yet flexible system for the instrument design was
needed. Following a modular approach, we created a library
of ready-made effects and instruments in Csound. Each
effect is provided as an UDO, specifically designed for this
project2 and stored in a separate file (see Table 1). Each

2https://github.com/cosmoproject/cosmo-dsp
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UDO file contains a header with a clear description of the
effect parameters controllable through the input arguments
and provides default values if arguments are not specified
by the user.

All input values to the UDOs are expect to be linear and
normalized between 0 and 1. Inside each UDO the con-
trol values are scaled to the parameter requirements of the
different Csound opcodes used, as is common for control
voltage in analogue modular synthesizers. This includes a
conversion of the linear input values from a controller to
exponential curves, if useful for the opcode parameters (e.g.
filter cutoff-frequency). All scaled parameters are printed
to the console for visual feedback during performance (see
UDO example code listing in Appendix A).

3.2 Mapping Format
The controller inputs and their functionality are stored in
a JSON file format3. We chose this format because it is
a) human readable, b) supported by many programming
languages, and c) easy to extend in the future for more
complex mapping functionality.

1 {"MIDI-Patch": {

2 "CC0_CH1":

3 {

4 "Lowpass": "Cutoff",

5 "RandDelay": "Feedback"

6 },

7 "CC1_CH1":

8 {

9 "RandDelay": "Dry/wet mix"

10 },

11 "CC2_CH1":

12 {

13 "Reverb": "Dry/wet mix",

14 "RandDelay": "Range"

15 }

16 }

17 }

Figure 4: MIDI controller mappings in JSON for-
mat for interface focussed instrument design using
the COSMO software framework.

The example in Figure 4 shows the use case with stan-
dard MIDI-controller numbers (0-127) and MIDI-channels
(1-16) abbreviated as CCx_CHx4. The patch shown in Fig-
ure 4 maps three continuous controllers to a chain of effect
processing modules (UDOS from Table 1). The first con-
troller (CC0_CH1) is assigned to the ‘cutoff frequency’ of a
‘lowpass filter’ (Lowpass.csd) and at the same time to the
amount of ‘feedback’ of a ‘delay effect with randomized de-
lay times’ (RandDelay.csd), a so called one-to-many map-
ping [11]. The second knob (CC1_CH1) controls the mix of
the delay signal with the input signal, a one-to-one map-
ping. Finally, the third controller (CC2_CH1) adds ‘reverb’
(Reverb.csd) to the signal but also modifies the range of
frequency changes of the random delay.

The order of appearance of the UDOs in the JSON file de-
fines the order of the effects in the audio signal path. Figure
5 shows the resulting effects patch, defined by the mappings
in Figure 4. The red arrows lay out the audio signal path,
where the blue connections show mapped controllers.

3http://www.json.org/
4For the COSMO-Boxes different variable names must be
used to read-in the control values via the Raspberry PI
GPIO header.

Table 1: User-Defined Opcodes for Csound in the
COSMO Effects Library.

UDOs2 Arguments

AnalogDelay.csd Delay time
Feedback
Dry/wet mix

Blur.csd Blur time
Gain
StereoMode
Dry/wet mix

Chorus.csd Feedback
Dry/wet mix

Distortion.csd Level
Drive
Tone
Dry/wet mix

FakeGrainer.csd Dry/wet mix

Hack.csd Frequency
Dry/wet mix

Lowpass.csd Cutoff frequency
Resonance
Distortion

MultiDelay.csd Multi tap on/off
Delay time
Feedback
Cutoff
Dry/wet mix

PitchShifter.csd Semitones (-/+ 1 octave)
Stereo mode
Dry/wet mix

RandDelay.csd Range
Feedback
Dry/wet mix

Repeater.csd Range
Repeat time
On/off

Reverb.csd Decay time
Cutoff frequency
Dry/wet mix

Reverse.csd Reverse time
Dry/wet mix

SimpleLooper.csd Record/Play
Stop/start
Speed
Reverse
Audio Through

SineDelay.csd Range
Frequency
Feedback
Dry/wet mix

SolinaChorus.csd LFO1 Frequency
LFO1 Amp
LFO2 Frequency
LFO2 Amp
Stereo mode on/off
Dry/wet mix

Tremolo.csd Frequency
Depth

TriggerDelay.csd Threshold
DelayTime Min
DelayTime Max
Feedback Min
Feedback Max
Width
Level
Portamento time
Cutoff frequency
Bandwidth
Dry/wet mix

Volume.csd Level

Wobble.csd Frequency
Dry/wet mix
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Figure 5: Graph structure generated from the map-
pings given in Figure 4. The graph shows the instru-
ment’s effect chain (red) and the controller map-
pings (blue).

3.3 Instrument design based on mappings
A mapping (.json) to Csound instrument (.csd) converter is
written in the Python programming language (Version 2.7).
The underlying procedure works in two main steps.

First, from the user mappings input file (see Section 3.2),
a directed graph is build using the Python NetworkX pack-
age [16]. The default graph contains two basic nodes: In
and Out, which are not connected in the beginning. From
the JSON mapping file, the controllers (CC0_CH1, CC1_CH1,
. . . ) and the UDOs are added as nodes to this graph, la-
belled as either ctrl-nodes or udo-nodes. Edges in the graph,
can be audio routings between udo-nodes (‘a’) or control
routings between ctrl-nodes and udo-nodes (‘k’, following
the Csound variable scheme [3, p. 22]). All assignments
between the nodes are taken from the JSON representation
and added as edges to the graph. Edges from one udo-node
to the next udo-node are made according to the order of
appearance in the mapping file. The In-node is connected
to the first udo-node, and the last udo-node is finally con-
nected to the Out-node (see Figure 5). Before a Csound
Instrument file (.csd) is written, the graph is validated i.e.
if there is an audio signal path from In to Out.

Second, based on the graph structure, a Csound instru-
ment file (.csd) is compiled which calls the UDOs from the
Effects Library (Section 3.1) and assigns hardware device
data streams to the UDO input parameters. Depending on
whether it is a MIDI-Patch or a COSMO-Patch, the cor-
responding lines of Csound code, to read-in the hardware
(ctrl7 for MIDI, chnget for COSMO) and store the values
in control variables, are generated. In the case of a MIDI-
controller all input values are normalized to be between 0–1
to be compatible with the UDO Library.

For each udo-node in the audio signal path, a line of
Csound code is generated using the information given in
the UDO file header. Earlier generated control variables
or default values are assigned to the UDO input parame-
ters corresponding to the structure of the graph. Finally, a
Csound instrument definition is written into a .csd file, con-
taining a header with Csound settings and the generated
lines of Csound code (see Appendix B).

4. DISCUSSION AND FUTURE WORK
In this paper we propose an approach to instrument de-
sign from a performer’s perspective and provide a proof-
of-concept software framework that uses this principle to
build a musical effect instrument. In contrast to traditional
instrument-to-controller mapping, this approach starts at
the functionality of the interface and defines the required
underlying instrument. This shifts the focus from ‘building
a software instrument and afterwards mapping controllers
to its parameters’ to ‘designing an interface which defines
and creates the required software instrument’. Interface
focussed instrument design therefore primarily focusses on
the human-computer interaction of a software instrument.
The strong link between the interface and the underlying
software may also result in an interface which reflects the
signal path. Although here, an example implementation is
provided for the COSMO-Project [10] in combination with
a library of Csound effects, this approach is not restricted
to any specific hardware or software.

In the mapping literature [11] three basic types of instru-
ment-controller mappings are discussed, respectively one-
to-one, one-to-many and many-to-one. The current imple-
mentation only supports one-to-one and one-to-many map-
pings. Mappings of multiple controllers to the same UDO
argument many-to-one would require adding controller-merge
nodes to the graph. In the graph-to-csound code compi-
lation, these nodes would have to result in extra lines of
Csound code in the instrument definition, a possibility to
explore further.

In the current implementation the main assignments are
in the JSON file but some mapping details (parameter ranges,
mapping curves) are handled inside the UDOs written in
Csound language. Providing the UDOs this way, on one
hand, it is supposed to make it easier for novice users to
quickly setup their instrument. On the other hand this
has limitations concerning the ability to fine-tune the in-
strument for optimal expressive control without knowing
Csound programming. However, all code is open-source and
more advanced users are encouraged to modify the existing
UDOs or to design their own UDOs using customized map-
ping curves and parameter ranges.

However, especially in the case of one-to-many mappings
it can be useful to quickly define control ranges already in
the JSON-mapping format, a feature foreseen to be added
in the future. The possible gain of flexibility can be cru-
cial especially in situations where a performer wants to fine
tweak the instrument in a rehearsal or in a soundcheck right
before a concert.

A great effort towards such flexibility is provided by the
Modality-toolkit [1] for Supercollider (SC). Their main mo-
tivation was an easier mapping of control data streams to
SC-instrument inputs (SynthDef arguments). Modality sup-
ports many commercial controllers with different data for-
mats (MIDI, HID, OSC), and even on-the-fly mapping and
re-mapping of controllers to the SynthDefs is possible dur-
ing performance. However, the Modality-toolkit is funda-
mentally different from our approach in terms of that a
Modality-mapping does not define the instrument logic in-
side the SynthDef. In our case a re-mapping of the physical
controls would result in a different instrument or at least in
a different signal path inside the instrument, whereas in Mo-
dality only the position of the physical control is changed.

Training of movement patterns is essential for performing
musicians to archive a virtuosic playing level [17]. Chang-
ing a mapping on-the-fly means that the same instrument
needs to be played with different body movements from now
on. Imagine a concert pianist having to remember that the
pedals changed their function or more drastically that the
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order of tones produced by the keys has changed during the
piece.

The strong binding between the interface and the software
instrument, as we propose in this paper, might on one hand
have advantages like an emphasis on the interface in the de-
sign process, and a link between the interface and the instru-
ment signal path. On the other hand, this might also bring
limitations in terms of less flexibility to create complex sig-
nal paths or complex mappings, different aspects that need
to be explored further. As this concept was developed after
the experience from the COSMO workshops mentioned in
the introduction, a detailed study with users coming from
different backgrounds (e.g electronic musicians, traditional
musicians, programmers, non-programmers) is foreseen to
better understand the applicability of this approach. There-
for a graphical-user-interface, with editor functionality for
the JSON mapping files is going to be implemented.

With the current proof-of-concept implementation we aim
to simplify the process of building a COSMO effect instru-
ment in Csound by focusing only on defining controller map-
pings to input parameters of given UDOs. Designing instru-
ments from the perspective of the performer’s interface may
open up new ways of thinking about software instrument
design.
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APPENDIX
A. EFFECTS LIBRARY EXAMPLE
To provide details of the underlying Effects library, an ex-
cerpt of Csound Code from the (Lowpass.csd) UDO con-
taining a lowpass filter with an additional distortion effect is
shown in this Section. Lines 1–15 of the Csound code below
give a description of the UDO in a user friendly style. The
”Arguments” and ”Defaults” definitions are also relevant for
the JSON-to-Csound converter, as they provide the order
of input arguments and default values required when gen-
erating the Csound instrument definition (see Section 3.3).

Lines 18–41 in the code listing contain the definition of
the user defined opcode for the lowpass filter. The linear in-
put controller values are converted to an exponential curve
(L. 21) for the cutoff frequency and scaled to a meaning-
ful parameter range (L. 22, from 30 Hz to 12 kHz), before
printed to the console (L. 23–24). The controller values are
smoothed (L. 25) to avoid parameter jumps, that might be
caused by the resolution of the controller (e.g. 128 steps
for MIDI controllers). Similar processing steps done for all
input parameters.

Finally, the Csound opcode for a resonant low pass filter
(lpf18) is called for of the two each stereo channels (L. 37–
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38) and the processed input parameters are assigned.

1 /*********************************************

2

3 Lowpass.csd

4

5 Arguments: Cutoff frequency, Resonance,

6 Distortion

7 Defaults: 0.8, 0.3, 0

8

9 Cutoff frequency: 30Hz - 12000Hz

10 Resonance: 0 - 0.9

11 Distortion: 0 - 0.9

12

13 Description:

14 A resonant lowpass filter with distortion

15

16 ;***********************************************

17

18 opcode Lowpass, aa, aakkk

19 ainL, ainR, kfco, kres, kdist xin

20

21 kfco expcurve kfco, 30

22 kfco scale kfco, 12000, 30

23 Srev sprintfk "LPF Cutoff: %f", kfco

24 puts Srev, kfco

25 kfco port kfco, 0.1

26

27 kres scale kres, 0.9, 0

28 Srev sprintfk "LPF Reso: %f", kres

29 puts Srev, kres

30 kres port kres, 0.01

31

32 kdist scale kdist, 0.9, 0

33 Srev sprintfk "LPF Dist: %f", kdist

34 puts Srev, kdist

35 kdist port kdist, 0.01

36

37 aoutL lpf18 ainL, kfco, kres, kdist

38 aoutR lpf18 ainR, kfco, kres, kdist

39

40 xout aoutL, aoutR

41 endop

B. GENERATED CSOUND INSTRUMENT
In this Appendix Section the Csound instrument definition
generated from the graph structure shown in Figure 5 is
presented. In the code listing below, lines 8–10 import
the required UDO files from the Effects Library. Then,
an instrument definition is written (L. 12–27). First, two
channels of audio data input stream are stored in the audio
variables named aL and aR (L 13). Then, the 7-bit MIDI
controller values are read-in and assigned to control vari-
ables (L. 16–18). In the lines 20–23 the earlier imported
UDOs are called in the order of their appearance in the
audio signal graph. Audio variables, control variables or
default values are assigned to the UDO’s input parameters,
based on the descriptions given in the UDO file. Finally
the processed audio signals are routed to the sound device
output (L. 25).

1 <CsInstruments>

2

3 sr = 44100

4 ksmps = 64

5 0dbfs = 1

6 nchnls = 2

7

8 #include "../DSP-Library/Effects/Lowpass.csd"

9 #include "../DSP-Library/Effects/RandDelay.csd"

10 #include "../DSP-Library/Effects/Reverb.csd"

11

12 instr 1

13

14 aL, aR ins

15

16 gkCC2_CH1 ctrl7 1, 2, 0, 1

17 gkCC0_CH1 ctrl7 1, 0, 0, 1

18 gkCC1_CH1 ctrl7 1, 1, 0, 1

19

20 aL, aR Lowpass aL, aR, gkCC0_CH1, 0.3, 0.0

21 aL, aR RandDelay aL, aR, gkCC2_CH1, gkCC0_CH1,

22 gkCC1_CH1

23 aL, aR Reverb aL, aR, 0.85, 0.5, gkCC2_CH1

24

25 outs aL, aR

26

27 endin

28

29 </CsInstruments>
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