
Rethinking Reflexive Looper for structured pop music

Marco Marchini
UPMC - LIP6
Paris, France

marco.marchini@upmc.fr

François Pachet
Sony CSL

Paris, France
pachet@csl.sony.fr

Benoît Carré
Sony CSL

Paris, France

ABSTRACT
Reflexive Looper (RL) is a live-looping system which al-
lows a solo musician to incarnate the different roles of a
whole rhythm section by looping rhythms, chord progres-
sions, bassline and more. The loop pedal, is still the most
used device for those types of performances, accounting
for many of the cover songs performances on youtube, but
not all kinds of song apply. Unlike a common loop pedal,
each layer of sound in RL is produced by an intelligent
looping-agent which adapts to the musician and respects
given constraints, using constrained optimization. In its
original form, RL worked well for jazz guitar improvisation
but was unsuited to structured music such as pop songs. In
order to bring the system on pop stage, we revisited the
system interaction, following the guidelines of professional
users who tested it extensively. We describe the revisited
system which can accommodate both pop and jazz. Thanks
to intuitive pedal interaction and structure-constraints, the
new RL deals with pop music and has been already used in
several in live concert situations.

Author Keywords
Live-looping, musical human-computer interaction, realtime
music system, HCI design

ACM Classification
H.5.5 [Information Interfaces and Presentation] Sound and
Music Computing, J.5 [Arts and Humanities] Performing arts
(e.g., dance, music), I.2.11 [Artificial Intelligence] Multiagent
systems.

1. INTRODUCTION
Live-looping is a technique for performing live music that
originated from magnetic tape recorders. It consists in cap-
turing audio (on stage or previously) using a device and
replaying it back in loops. Terry Riley was the first musician
to use tape loops and tape delay/feedback systems in his
performances in the 60s [7]. The technique was later used
in minimal music to create endless repetitions of rhythms.
Live-looping became popular in the 90s after the commercial
release of several looping devices (notably Roland and Dig-
itech loop pedals) affordable and easy to use. Loop pedals
offer the ability for a single musician to create multiple layers

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’17, May 15-19, 2017, Aalborg University Copenhagen, Denmark.
.

to their live music, thus creating complex musical textures
such that of a full band. In pop/folk they were typically
used to enrich instrumental music with repeated rhythmic
patterns or to create songs with static harmony.

A search for the keyword “loop pedal cover” on Youtube
produces, at the time of this paper, about 145k matching
videos, many of which are recent amateur performances.
Typical performance consists of a build-up part where the
musician records multiple layers of sound on a fixed chord
sequence (usually four chords). The chord sequence repeats
throughout all the performance being used by the musi-
cian as an accompaniment over which s/he sings or plays
solos. However, musicians rarely include a break-down sec-
tion where tracks are muted and a new chord sequence is
introduced. This occurs because the common loop pedal
makes it difficult to produce transitions between sections
with different durations and/or chords. As a consequence,
only songs with static harmony are performed with a pedal
loop. For example, whereas we can find plenty of covers for
Beatles songs with static harmony, we could not find any
solo performance of I feel fine with a loop pedal, as this
song is not with static harmony. In I feel fine chords change
from verse to chorus, and the two sections have different
durations.

Reflexive Looper (RL), proposed by Pachet et al. [6],
brings the potential to revive the creative use of live-looping.
Looping with RL goes beyond the play-back of sound record-
ed live, as the recorded input is transformed in several com-
plex ways before being played-back (slicing, pitch-shifting
and concatenative synthesis, see Sec. 2.4). Whereas a com-
mon loop pedal determines the playback material depending
on the position in the loop and the button pressed by the
user, each looping-agent in RL (chords, bass, drum, and
voice) determines the playback material by solving an opti-
mization problem, which is updated every few milliseconds.

We argue that the potentials of RL were not fully exploited
yet because of its focus on jazz improvisation, and the
lack of planning device for guiding the interaction. Several
human-computer improvisation systems allow for plans that
can guide the performance in a strict or loose manner [4].
Similarly to the Continuator [5], RL accumulates an ever
growing database of musical phrases from which to draw from
in fabricating the response, making them less predictable as
the performance evolves. Not only such behavior contradicts
most of Pop music, but also any music containing a begin,
an evolution and an end.

This article describes a new software architecture that
solves the problem of performing structured pop music. Pop
music, as other genres, is based on structured repetition,
which requires a significant degree of planning. We show how
the proposed system allows a solo musician to play I feel fine
by The Beatles live, something that was impossible with the
common loop pedal. We show that using RL the musician

139

can easily produce seven tracks in real-time that respect the
transitions between sections with few explicit instructions
given by the musician during the performance. Nonetheless,
the interaction that we designed for pop is also applicable
to structuring improvisation in other contexts (e.g. jazz).
The new system is therefore usable in a multitude of live
scenarios with timing constraints: stage performance, piano
bar, jazz improvisations, etc.

2. REDESIGNING REFLEXIVE LOOPER
We have implemented the new system as a VST plug-in
and we also improved each of the constituent blocks of
the system which we review in this section: playing-mode
tracking (Sec. 2.1), chord substitution (Sec. 2.2), and chord
grid (Sec. 2.3). Lastly, in Sec. 2.4 we summarize the typical
interaction with RL through a short example, which shows
the potentials of implicit interaction.

2.1 Playing-mode tracking
Playing-mode tracking is a key aspect of RL allowing it to
pro-actively listen to the musician through an intelligent
real-time analysis of the audio input. The analysis aggre-
gates a custom frame-based playing-mode recognition, with
standard silence detection and onset detection algorithms to
track and tag musical phrases according to playing-modes.
Note that the current system does not need to recognize
chords from the audio input as those can be easily deduced
from the chord grid over which the musician is playing (this
will be explained in more details in Sec. 2.3).

In the previous prototype (see [6]) a MIDI-guitar was
required for playing-mode recognition, and this was not ac-
cepted by most guitarists, as they wanted to use their own
guitar without adding extra sensors. Playing-mode recog-
nition allows the system to discriminate between musician
playing chord (strumming, arpeggiated, etc.) from musician
playing melody, drums, or bassline . In the original system,
this was done by classifying features extracted from the
MIDI-events received from the guitar output [6].

In our new implementation we free the musician from the
need of MIDI-guitar by adopting another approach based on
extracting features directly from the guitar audio-signal as
explained in [2]. This approach makes RL compatible with
any electric or electro-acoustic guitar, as long as sufficient
training data for each playing mode is provided for the
specific guitar1.

For each playing mode that the musician wants to loop
(generally chords, drums and bassline, but not melody),
the system instantiates a looping-agent. This is a real-time
algorithm that runs on a dedicated thread, that keeps track
of all the musical phrases played by the musician so far in
the specific mode, labels them with the appropriate chord
names, and prepares loops to be played on the upcoming
bars. Each looping agent schedules loops in one particular
mode, according to the musical phrases collected so far, and
is subject to real-time scheduling conditions (as described in
[1]). We tune the parameters of each agent (the parameters
are described in Sec. 2.3 as constraints to the constraint
optimization) according to their mode: e.g. unlike chord,
drum loops do not respect harmonic constraints and are
never transposed.

2.2 Chord substitutions
The previous system, described in [6], uses the concept of
chord substitution coming from harmony theory. This allows
a loop to be reused in harmonic contexts which are similar

1Our training set contain at least 10 minutes of recording
for each playing mode.

to the one where the loop was recorded. For example, the
chord A minor is an acceptable substitution of the chord C
major, so if the musician has played an A minor but no C
major, the system can use the first in the place of the second.
When loading a new chord grid, the system obtains all the
possible substitutions in advance by calculating a harmonic
distance between all chord pairs. The pairs for which the
distance is below a given threshold (adjustable by the user)
are allowed substitutions each with a cost proportional to
the harmonic distance.

To calculate the harmonic similarity between two chords
we first transform each into a histogram over the pitch classes.
We give a weight of one to each pitch class in the chord (e.g.
the chord C7 corresponds to the pitch classes {C, E, G, Bb})
and two to the third of the chord, and zero to the remaining
pitch classes in the octave. Then we compute the cosine
similarity between the two deriving normalized histogram as
a similarity between chords. From the harmonic similarity x
between chords, we derive the harmonic distance as d = x−1.

Chord substitution allows the system to recycle loops for
different harmonic contexts. In the new prototype we com-
bined it with audio-transposition for a maximal flexibility
of the system. With audio-transposition musicians are not
required to play many chords, and songs can also modulate
to different tonalities. We introduced audio-transposition
into RL by integrating already existing pitch-shifting algo-
rithms (we use the Rubber Band Library2 as it is an open
source project, also other commercial pitch shifter software
can be set for better quality). To handle transposition, when
loading the chord grid, the system also calculates the cost
of substitution for each transposed pair in an interval range
defined by the user. We consider transposition as an addi-
tional cost that is combined to the cost of the substitution,
therefore promoting small transpositions over big ones.

The user can also set a maximal allowed transposition
interval (in semitones) for each looping agent, and each
agent will autonomously take decisions about the optimal
transposition and substitution to use at each moment, as
explained in the following section.

2.3 Chord grid
Before starting to play, the user selects a chord grid over
which s/he wants to improvise. RL does not make use of any
music material coming from previously recorded sessions or
any external backtrack (although in a future implementation
it might be interesting to allow that). Instead, as any live
looper, RL records audio material during the session and
plays it back in real-time without musical breaks. The saved
chord grid does not include any prepared backtrack, nor
any pre-defined transpose instruction, serving for the only
purpose of defining harmonic constraints for the selection of
material to play-back.

Once the chord grid and a BPM have been selected by
the user, RL constructs and constantly maintains a list of
future beats (Bi)i=0,...,n ordered in time, where the B0 is the
current beat, B1 is the next beat, and Bn is the further away
in time. The number of beats n in the list is determined by
the BPM, so as to include the beats in the next 10 seconds
(or another duration chosen by the user) at least (e.g. if
BPM= 120 then n = 20). At each beat Bi corresponds
a chord Ni in the grid, and a vector Mi containing other
contextual information about the beat (metrical position of
the beat, section number, and more).

All of the musical phrases that have been recorded so far
are sliced into chunks c of duration one beat and stored in the
collection C. Each chunk c played by the musician inherits

2See http://breakfastquay.com/rubberband/

140

the information about the beat over which it was played.
This allows us to define N(c) and M(c), the chord content
and the contextual information of the chunk respectively.
We then define C∗ as the extended collection of all possible
transpositions of chunks in C (the transposition is the range
of integer semitones between -7 and +7 to account for a
full octave, but can be restricted or incremented by the
user). For a chunk c∗ ∈ C∗ transposed from c ∈ C we
define M(c∗) = M(c) and N(c∗) = transp(N(c)), where we
transpose the chord of the same amount as the chunk. Lastly,
we define Ci as the set of acceptable candidate chunks at
beat Bi, this consists of all chunks in C∗ that have harmonic
distance lower than a given threshold to the target chord Ni,
for which Mi is compatible to M(c). The latter condition is
verified if the metrical position in Mi is the same as M(c),
and also if other conditions depending on the settings chosen
by the user apply.

At any given instant, each looping-agent in RL determines
the playback material by solving the optimization problem:

arg min
(ci)i=0,...,n

(
n∑

i=0

replCost(ci) +

n−1∑
i=0

discCost(ci, ci+1)

)
under the constraints:

ci ∈ Ci

where replCost(ci) is the cost of replacing the chord Ni with
the chord N(ci) given by the harmonic distance and the
transposition, and discCost(ci, ci+1) is a cost of transition
which depends on M(ci) and M(ci+1). The transition cost
penalizes discontinuities in time and transposition, especially
within the bar, thus favoring the reuse of long sequences of
audio over short ones. The problem of finding an optimal
sequence of chunks (ci)i=0,...,n is efficiently solved using a
dynamic programming algorithm that can find a solution,
with computational complexity bounded by the square of
maxi‖Ci‖.

2.4 Illustration of an implicit interaction
We illustrate how the system works with the short music ex-
ample represented in Figure 1. In the example, the musician
has chosen to play over an eight bar long chord grid, at a
tempo of 90 BPM. After hitting the start button a pre-count
of one bar announces the grid; this is the sole button to be
used as the rest of the interaction is completely implicit. In
this example the musician plays during the first four bars
while leaving the system continue alone on the remaining
four. More precisely, in bars 1-2 he plays an arpeggio, and
in bars 3-4 plays a bassline.

During bars 1-2 the system provides no back-loops as it
is launched from an empty state. The chord-agent records
the arpeggios and fabricates a musical continuation, which
gets updated continuously as the audio material gets in.
Such continuation stays however inhibited as long as the
musician continues playing the arpeggios, so is not released
immediately.

At bar 3, the shift to a new mode of playing (bassline) is
detected by the system, this removes the inhibition of the
chord-agent which is thus faded-in immediately. During bars
3-4 the same process is repeated for the bass-agent, which
records the bassline in an inhibited state until bar 5 where
the musician stops playing altogether, thus the bass agent
continuation of the bassline is also released.

These examples show how to produce a bass and chord ac-
companiment with RL within four bar, without any explicit
interaction. At this point the musician could already play a
melody or sing on top of the accompaniment which would
continue playing even on different chord sequences. We show

User plays arpeggio chords User plays bassline

System loops chords

1. 2. 3. 4.

User stops playing

5. 6. 7. 8.

System loops bassline an octave lower

Figure 1: This eight-bar long example illustrates the
basic use of RL. It shows how implicit interaction
defines events when each agent is activated.

in the next section how this implicit interaction, combined
with structure-constraints, can build up the arrangement of
a complete pop song.

3. EXTENDING THE SYSTEM FOR POP
In the new interface design, we attempted to create not only a
tool for engaging stage performance but also a creative music
tool for home performance with an intuitive interaction. As
RL makes it easy to build full band styles by recording few
bars, musicians often completely reshape their performance
within the first few tests. RL is described as a creative tool
by professional musicians (see [3]). We argue that improving
the interface design reinforces such creative potentials, by
avoiding disruptions of creative flow.

In this sense, our goal is to enable musicians to quickly
explore the musical possibilities given by the system (see [8]).
With this goal in mind, we believe adopting the appropriate
metaphors and UI-feedback leads to the most intuitive in-
terface, which allows controlling the system with minimal
effort. The second author has been a jazz tester of the sys-
tem since he invented it. Other occasional tester have given
important feedback. During the last two years, we iterated
numerous tests with third author of this article and pop
musician Benôıt Carré. This collaboration led to numerous
minor-improvement and adaptations that summed up into
a completely new system. The result of the collaboration
is two-fold. From one side, we developed the UI-interface
metaphors that are relevant to musicians, which helped us
designing an appropriate interface. On the other side, we
learned from him which are the specificity of pop music that
require specific attention.

Most musicians testing the system wanted to gain con-
trol over the looping-agents in an explicit way by pausing,
disabling or forcing them when desired. We have tested a
commercial MIDI pedal interface to do so (see Sec. 3.2). We
noticed that our musicians would use this feature extensively
in a testing session to test results on-the-fly but in concert
situations they would tend to use this resource minimally
because in that case structure constraints are generally suffi-

141

Table 1: Chord sequence in the song I feel fine by
the Beatles.

Section Chord sequence

intro: A Asus4 G Gsus4

D Dsus4 D Dsus4

verse: D Dsus4 D Dsus4

A Asus4 A G

D Dsus4

chorus: D F#m G A

D F#m Em A

bridge: C Csus4 C Csus4

impro: C

Table 2: Structure constraint table used for the song
I feel fine. On the left the table for the chord agent,
on the right the analogous tables for bass, drums
and voice agents are represented in compact form.

C
ho
rd
s:

in
tr
o

ve
rs
e

ch
or
us

br
id
ge

im
pr
o

intro 4 4 7 4 7

verse 4 4 7 4 7

chorus 7 7 4 7 7

bridge 4 4 7 4 7

impro 7 7 7 7 4

Bass:

Drums:

Voice:

cient and more convenient. We also added the possibility to
create additional textures with manually activated agents
which can go beyond the pre-trained playing modes. This
feature made good use of the pedal interface and was used
by musicians more extensively in concert situations as well.

3.1 Enforcing musical structure
The chord grid may be structured into different sections
such as intro, verse, chorus, bridge, etc. In pop music struc-
ture is important and the transitions between one section
to another are often highlighted by variations in instrumen-
tation. We want RL to realize these transitions properly
without the need of extra buttons during the performance.
For this reason, we introduced structure-constraints, which
constrains the agents to use only sound material originating
from specified sections.

A typical structure-constraint is defined in the RL inter-
face by marking check-boxes in a matrix where the rows i
represent the target sections and the columns j the source
sections. Marking the (i, j)-cell as ON signifies that the sys-
tem can use audio recorded during section j when generating
loops for section i. An example matrix used for the song I
feel fine is shown in Tab. 2.

Thanks to configurable structure constraints the pop musi-
cian realized a cover of I feel fine by the Beatles. The chord
sequence for each song section is reported on Tab. 1: intro,
verse, chorus, bridge, and impro. The musician repeats each
section several times in a row and also alternates verse and
chorus, depending on the duration of the version he wants
to realize. In Fig. 2 we represented an example performance
that we have recorded. The top three rows represent the
performance of the musician, in terms of button pressed,

instrumental phrases played, and vocals. The rest of the
rows show the loops played by the system with incoming ar-
rows from their origin phrase. Throughout the three minute
performance, the musician only uses four explicit controls:
start, fx, mute-instruments, stop.

Despite the few explicit controls, all of the orchestrating
actions (activate loops, stop loops etc.) that are showed in
Fig. 2 result as a consequence of the structural constraints
chosen by the musician and his playing. Tab. 2 shows the
structural constraints chosen by the musician for chords, bass,
drums, and voice. The tables indicate whether recorded
material from one section can be used in a second. For
example, the table for the chords indicates that during the
chorus only the audio patterns recorded in the chorus can
be used. But in the verse, it can also use audio recorded
from the intro, and so on.

3.2 Pedal control
In early prototypes of RL, the controls were limited to a start
button and a stop button: a mouse click was thus sufficient
for demoing the system. In the last two years, we have
tested several MIDI devices for controlling the system, we
still have not found the ideal controller. It is a common habit
from musicians to ask for “just a button more” to control
the latest aspect of their song that has become suddenly
important. The risk of following the requests too literally is
that we end up with plenty of unrelated controls that are
too specific and are not remembered by the users. This is
why we concluded that, before deciding what device we are
going to use, we needed to define appropriate UI metaphors
that would allow organizing the controller and provide useful
feedback to the users. Following such metaphors also allows
us to state which features the ideal device should possess.

The most important metaphor in controlling the system
is that of a looping-agent which we have already introduced
in this paper. Besides being a component of our software,
a looping-agent is also intuitively understood by musicians
as a track that automatically assumes a state over which
we might act on: on, off, recording, automatic, or manual.
This also seems a natural extension of the traditional loop
pedals. For this reason, organizing the interface by looping-
agents results in the most consistent interface as each of
them is represented by a single controller: be it a button or
a switcher or another type of controller.

The device we are thus looking for should allow switching
between states, but also provide feedback from the software
when it is auto-piloted by the software. The simplest realiza-
tion of this principles is given by a button with a LED that
can change colors to indicate the state. We use a single press
of the button to switch between states: automatic, for using
the implicit interaction, on, to force the playback of the
loop, or off to mute the loop. When in automatic-state, the
LED can also provide a feedback to indicate when the loop
is ready to play music, signifying that the looping-agent has
recorded enough material to provide a response. We found
few commercial pedals that would allow this possibility to
give LED feedback, and we have been using at the moment
the Keith McMillen Softstep pedal for the purpose3.

3.3 Video installation in concert
The current RL system was used in several concert scenario
in the last two years and participated in a competition of
new music instruments. In concert scenarios, musicians
come with a prepared performance, which means having
prepared the chord grid and the structure constraints; there

3See https://www.keithmcmillen.com/products/
softstep/

142

Interaction on I feel fine

count intro verse 2x bridge 4x impro ad-lib 23x 7x 4x 4x

musicianstart fx mute stop

arpeg. drum bass strum. drum strum.bass

sing sing sing sing

loops arpeg. strum. arpeg.

drum sing

bass sing

sing

drum

strum.

bass

Figure 2: Tracks played on the song I feel fine. The first three rows contain: the pedal actions performed
by the musician, the instrumental track played, and singing. The remaining rows show the loops generated
by the system connected to their source.

Figure 3: Musician playing with RL on stage. The
video projections, in different colors, show the mu-
sical agents playing with the musician in real-time.

is, however, space yet for some improvisation. We generally
received positive feedback from the audience, although some
people commented that it was hard to follow all the complex
transformations that RL applies to the playback material
and, because of this, some people thought that the musician
was playing over pre-recorded backtracks.

Pop music is also a genre where visuals are becoming in-
creasingly important during concerts. RL offers a possibility
for creating engaging visuals of the performances by looping
videos. To best enrich the experience of the audience from
a didactic and entertaining point of view, we implemented a
video installation that displays the system status by playing
back live video transformed similarly to the audio and in
sync with the music. This allowed the audience to follow the
performance in a way that was not possible before. Each
looping-agent is visible as a looped video that is synced with
the music.

Fig. 3 shows the use of the video installation during a
concert. To realize the installation, we implemented an
application with openFrameworks4, connected to a video
camera capturing the performer live and recording the stream
of video. The application communicates via OSC to the
VST plug-in which, in turn, sends a clock-signal and the
instructions for reproducing the video loops in sync with the
looping-agents.

4. DISCUSSION
Our new system solves the problem of performing structured
pop music with a looper. Structure is given by the section-

4See http://openframeworks.cc/

structure of the song, which is set by the musician, and
enforced by specifiable structure-constraints. Each phrase
learned by the system is labeled according to the section
it was recorded from. In each section the musician can
specify structure constraints that limit the section of origin
of samples used to generate the responses.

In addition, we have improved the interface with the
system by simplifying it for the user. We implemented the
system as a VST instrument, which allows the musician to
work within his own DAW. By classifying playing modes
directly from audio, we removed the necessity for a MIDI
instrument, thus allowing musicians to use any instrument.
We introduced a MIDI pedal with LED feedback allowing to
extend the basic interaction with the system such as start
and stop buttons with additional controls over the looping-
agents. This allowed control over sound and textures which
makes RL a creative tool for experimenting with sound.

We showed, with the example of I feel fine, how structure-
constraints allow creating contrasts in rhythmic style be-
tween alternating sections of the piece (e.g. verse, chorus,
bridge). We showed that this method requires using very
few explicit controls during the performance and recording
only few bars of instrumental performance to generate all
the tracks, something that was impossible with a traditional
looper.

5. CONCLUSION
Reflexive Looper (RL) is a live-looping system inspired by
jazz combos which allows a solo musician to incarnate the
different roles of a whole rhythm section by looping rhythms,
chord progressions, bassline and voice. The system works
without pressing any button by exploiting implicit inter-
actions for guiding intelligent live-looping agents. Implicit
interactions, embodied in the music performance itself, are
possible thanks to a real-time AI-engine listening to the
audio produced by the musician. The AI continuously classi-
fies music input based on its playing-mode (e.g. strumming,
bass-line, or melody) and feeds databases of musical phrases
in different playing-modes to their respective music-playing
agents. Each agent decides what to loop back at any moment
depending on what the musician is currently playing. Using
concatenative-synthesis and transposition, the agents are
also able to respond with new musical phrases derived from
the ones previously learned.

The original implementation of RL was applied to jazz
improvisations over a chord grid with interesting musical
results. To cope with pop music structure, we introduced
specifiable structure-constraints limiting the system response
inside some parts of the song (e.g. verse, chorus, or bridge).
The user can specify such constraints in advance to enforce
a predefined structure. In addition, we introduced a set of
additional music-agents that the user can activate manually

143

with a pedal interface to enrich the musical texture. We
designed the interaction with the pedal so that it is as simple
as it can get, by responding pro-actively to the commands
of the musician in a context-aware fashion. This allows a
smooth coexistence of both implicit interactions and explicit
interactions.

6. ACKNOWLEDGMENTS
This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
n. 291156).

We thank Fiammetta Ghedini for assistance with video
editing, and Pierre Roy for the numerous discussions on code
optimization.

7. REFERENCES
[1] R. B. Dannenberg. Real-time scheduling and computer

accompaniment. 1989.

[2] R. Foulon, P. Roy, and F. Pachet. Automatic
classification of guitar playing modes. In International
Symposium on Computer Music Modeling and Retrieval,
pages 58–71. Springer, 2013.

[3] J. McCormack and M. d’Inverno. Designing
improvisational interfaces. In Title: Proceedings of the
7th Computational Creativity Conference (ICCC 2016).
Universite Pierre et Marie Curie, 2016.

[4] J. Nika. Guiding human-computer music improvisation:
introducing authoring and control with temporal
scenarios. PhD thesis, Université Pierre et Marie Curie
Paris 6 - Ircam, 2016.

[5] F. Pachet. The continuator: Musical interaction with
style. Journal of New Music Research, 32(3):333–341,
2003.

[6] F. Pachet, P. Roy, J. Moreira, and M. d’Inverno.
Reflexive loopers for solo musical improvisation. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 2205–2208. ACM,
2013.

[7] M. Peters. The birth of loop. Retrieved May, 25:2004,
1996.

[8] R. W. White, B. Kules, S. M. Drucker, and m.c.
schraefel. Supporting exploratory search, introduction,
special issue, communications of the acm. April 2006.

144

