
ChuckPad
Social Coding for Computer Music

Spencer Salazar1,2
ssalazar@calarts.edu

Mark Cerqueira3

mark@mark.gg
1Center for Computer Research in Music and Acoustics (CCRMA), Stanford University, Stanford, CA 94305

2California Institute of the Arts, 24700 McBean Pkwy, Valencia, CA 91355
3721 Old County Road, Belmont, CA 94002

ABSTRACT
ChuckPad is a network-based platform for sharing code,
modules, patches, and even entire musical works written
on the ChucK programming language and other music pro-
gramming platforms. ChuckPad provides a single repos-
itory and record of musical code from supported musical
programming systems, an interface for organizing, brows-
ing, and searching this body of code, and a readily accessi-
ble means of evaluating the musical output of code in the
repository.

ChuckPad consists of an open-source modular backend
service to be run on a network server or cloud infrastructure
and a client library to facilitate integrating end-user applica-
tions with the platform. While ChuckPad has been initially
developed for sharing ChucK source code, its design can ac-
commodate any type of music programming system oriented
around small text- or binary-format documents. To this
end, ChuckPad has also been extended to the Auraglyph
handwriting-based graphical music programming system.

Author Keywords
ChucK, computer music programming, social coding

ACM Classification
H.5.5 [Information Interfaces and Presentation] Sound and
Music Computing, H.5.3 [Information Interfaces and Pre-
sentation] Group and Organization Interfaces—Collaborative
computing.

1. INTRODUCTION
ChuckPad is a network-based platform for sharing code,
modules, patches, and even entire musical works written
on the ChucK programming language [17] and other music
programming platforms. Overall ChuckPad has been cre-
ated to solve a number of goals. The first of these is to
provide a single repository and record of musical code from
supported musical programming systems, bring together the
miscellany of code spread variety of disparate online forums,
email lists, version control systems, tweets, and other mech-
anisms. The second is to provide an interface for organizing,
browsing, and searching this body of code. The third is to
provide a simple means of evaluating the musical output of

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’17, May 15-19, 2017, Aalborg University Copenhagen, Denmark.
.

code in the repository, without necessitating the installation
of new software or executing foreign and untrusted code.

To this end, ChuckPad consists of a modular backend
service to be run on a network server or cloud infrastruc-
ture and a client library to facilitate integrating end-user
applications with the platform. The server component of
ChuckPad is further divided into a core data management
layer, a web frontend for browsing shared code and integrat-
ing into conventional social media services, and a rendering
framework for producing fixed-media previews of code in
standard audio formats. The initial version of the client li-
brary has been developed in conjunction with miniAudicle
for iPad [14], an iPad-based editor for ChucK.

While ChuckPad has been initially developed for sharing
ChucK source code, its design can accommodate any type
of music programming system oriented around small text-
or binary-format documents. For instance, ChuckPad has
been extended to the Auraglyph handwriting-based graph-
ical music programming system [13]. A single instance of
the ChuckPad server backend can support multiple distinct
client applications and programming code languages, thus
providing a single nexus for storage and presentation of mu-
sical code, allowing users to share identity and login in-
formation for sharing multiple code types, and enabling a
single client application to access and utilize multiple code
types. At the same time, ChuckPad, as open-source soft-
ware, is designed such that it can be hosted independently
of the authors’ central public ChuckPad instance either as
a private service or as an alternative public host.

2. BACKGROUND WORK
Until recently, wide area network-mediated systems for mu-
sic programming have had a limited history. A number of
music programming systems use network-aware techniques,
such as Open Sound Control [19] or bespoke networking
protocols, in their basic operation on a singular computer.
These include SuperCollider [9] and ChucK [17], which, de-
spite built-in networking capabilities, have been relatively
rarely used for mediating wide-area performance or code
sharing. Impromptu [15] and JITLib [2] include explicit
support for synchronization over the network, with docu-
mented instances of performances utilizing these features.
The CoAudicle [18] and miniAudicle for iPad [14] presented
two environments for real-time collaborative programming
of music using ChucK. Lee and Essl describe a variety of im-
plementations and conceptual taxonomies for networking in
live coding [8]. In particular they describe music program-
ming frameworks that allow for networked code sharing,
including Gibber [12] and Sketchpad [1], which all feature
a real-time shared code editor, and their own extensions
to UrMus, adding shared program state and shared text
editing [7]. LOLC is a collaborative music programming

237



system that synchronizes chat messages and programming
commands from distributed digital performers into a unified
performance dashboard [4]. Lich.js is a collaborative frame-
work for music programming based onWeb Audio, Web GL,
and other web technologies [10]. Crowd in C[loud] mediated
a real-time performance inspired by Terry Riley’s In C be-
tween many audience members through an online website
loaded onto their phones; various musical parameters of the
software on each phone was controlled by on-stage perform-
ers using JavaScript code [6].

Most of the efforts described above have focused on real-
time sharing of code. In the realm of asynchronous creative
code sharing, archiving, and long-term collaborative devel-
opment, Shadertoy is an online tool for developing, sharing,
and viewing audiovisual software written in the OpenGL
Shading Language [5]. sc140 compiled into an album a
number of SuperCollider programs, originally distributed
via Twitter and adhering to that service’s 140 character
limit for individual messages [16].

A number researchers have explored the nature of social
coding in general purpose programming frameworks. Dab-
bish et al. explored the effects of the social coding site
GitHub on collaboration, awareness, community, and self-
education in software development [3]. Pham et al. docu-
mented social practices developed by software creators on
GitHub [11].

3. DESIGN
At its core, ChuckPad is a server backend system structured
around individual document resources and an external in-
terface based on Representational State Transfer (REST).
ChuckPad does not actually care about the content within
a document resource; it is completely agnostic to the under-
lying file format, so it can easily store, for instance, ChucK
scripts, PureData patches, PCM audio files, or any other
type of singular document resource. For instance, while
miniAudicle for iPad stores textual ChucK code documents,
Auraglyph stores textual JSON files corresponding to its
own serialization format.

A few terms that will be used in describing the system
merit brief description.

• The ChuckPad server is the generic server component
of ChuckPad.

• The ChuckPad client refers to a generic client, a ref-

Figure 1: Browsing a list of recent documents.

Figure 2: Uploading a new document.

erence client, or the application-agnostic client-side li-
brary (exactly which can be inferred from context but
is generally not significant in this discussion).

• A ChuckPad client application is a specific client
implementation of the ChuckPad, for instance, mini-
Audicle for iPad. A client application typically builds
on the generic client-side library, but will not usually
need to customize the ChuckPad server component.

• A ChuckPad document resource is an instance of the
thing being stored, e.g. a ChucK script, an Auraglyph
patch, etc. The exact nature of the document resource
will obviously vary depending on the client applica-
tion, but in general the generic ChuckPad client and
server components will not need to concern themselves
with these details.

Each document resource is ascribed to the user who up-
loaded it, and ChuckPad also tracks metadata such as a
title, description, time and date of creation, and time and
date of last modification. Arbitrary unstructured metadata
can also be stored with each document. This is intended
for client applications who need to store additional meta-
data with document resources that is specific to a partic-
ular client application. For instance, Auraglyph uses this
to store a visual description of Auraglyph programs that is
displayed to users while they are browsing a list of programs
available on the service. ChuckPad also tracks how many
times each document reosurce has been downloaded, which
is used as a rough popularity metric.

A ChuckPad user is able to browse the repository of
ChuckPad scripts through several filters. A “Popular” filter
lists documents in order of recent popularity and a“Recent”
filter lists in descending order of creation date (Figure 1).
The “Documentation” filter shows documentation and ex-
ample code and “My Scripts” shows the users own scripts
they have uploaded if they are logged in. A typical client
application will allow the user to select which filter they
would like to explore and then pull the list of documents
corresponding to that filter from the server. Management
of how each list is formed and what documents are in each
list is handled by the server and is not dependent on the
actual format of the document.

After the user selects a document, the client application
then downloads the full contents of the document and loads

238



Figure 3: The ChuckPad technical architecture.

that for viewing and execution. Through the editing func-
tions of the client application, the user can also change the
downloaded script to experiment with different modifica-
tions. These modifications can’t be saved to the original
base document, but the user can duplicate the document
and upload the modified version under their own account.
If a user determines that a document is somehow abusive—
for instance, it intentionally attempts to crash the client
application or to access unauthorized local resources—they
can mark it as such, which will cause the server to flag the
document for review by the server administrators.

A user who has logged in through the client application
can upload documents that will be associated with their
account (Figure 2). Users who do not have an account or
are not logged in cannot upload documents. Before up-
loading, the client application can allow the user to change
the document title and add a text description. A client
application should typically also perform some degree of in-
tegrity checking on the document before uploading it; for
instance, miniAudicle for iPad ensures that ChucK scripts
compile without errors before uploading them. Newly up-
loaded scripts will automatically be added to the global doc-
ument repository, immediately showing up in the “Recent”
filter and the user’s “My Scripts” filter. When uploading,
the client application can also indicate if the document was
derived from another document in the service and, if so,
which document. This parent–child relationship between
uploaded documents is tracked by the server, although it is
not displayed in client applications or the web-based fron-
tend (we believe it may be useful in the future for analyzing
the relationships between code documents and displaying
these analyses to users). Users have the option to create a
new login username and password through the client appli-
cation, or to sign in with existing credentials.

A single ChuckPad server can host file types that are asso-
ciated with more than one client application. For instance
the ChuckPad server can currently host ChucK files and
documents for the Auraglyph programming environment.
A client application can choose which document types it
wishes to access, and can display and work with multiple
document types if it is capable of doing so. User iden-
tity extends to the entire server, so a single username and
password will work for any client application and document
type that uses the same backend host. Currently, Chuck-
Pad has been extended to support both ChucK documents
and documents for the Auraglyph handwriting-based audio
programming environment.

The web frontend of ChuckPad is designed to be a com-
pletely frictionless experience for a person looking to explore
the data that exists on the ChuckPad server. Users visit-
ing www.chuckpad.io can access the same library of data a
user using a ChuckPad client can, but can do so without
installing any additional software on their device. The only
requirements to fully take advantage of this medium is a
web browser capable of displaying HTML and playing AAC
files—assumed capabilities on any modern web browser.

To make this web experience truly complete for a user,
the web frontend coordinates taking a document resource,
rendering it to fixed media, and playing the output to the
user. User browsing ChucK patches on www.chuckpad.io

can see a list of patches uploaded by users and for each
patch, can play an audio preview of that patch. This allows
a user to listen to a ChucK patch on their computer without
ever compiling or running a single ChucK file. This site also
links to miniAudicle, which allows users to modify and run
patches locally. This lets curious would-be creative coders
experience ChucK easily.

4. IMPLEMENTATION
Figure 3 illustrates the backend architecture of ChuckPad.
The ChuckPad server is written in Ruby with the Sinatra
framework, which provides a very lightweight scaffold for
building web-based systems. Data is stored in a PostgreSQL
database. miniAudicle and Auraglyph allow patch data (i.e.
the main document resource and auxiliary metadata) to be
20 KB in size.

The primary roles of the ChuckPad server are user man-
agement, patch management, and the web frontend. The
user API allows for creating users, logging in, logging out,
and resetting passwords. The patch API allows for put op-
erations like creating patches, updating patches, and delet-
ing patches. It also support operations like getting recent
patches, documentation patches, a user’s own patches, and
a list of patches for any user. Patches can also be set to hid-
den which makes them invisible to all users except the user
who created the patch; this functionality can be leveraged
for users to upload a draft of a patch that they do not wish
to publish yet. Later on, a user can update a patch to be
visible to all users. Patches reported as abusive attach the
abuse report count to their metadata and this is returned
in all requests so client applications can proactively chose
to block showing those patches.

The ChuckPad server allows supporting multiple client

239

www.chuckpad.io
www.chuckpad.io


applications. A user can log into different client applications
using the same credentials with a given server. Resources
uploaded from different apps are stored with an identifier
in the patches table; any patch requests from a ChuckPad
client properly associate with the type of resource that the
requesting app can handle. The benefits of a single server
supporting multiple client applications include the sharing
of user credentials, simplifying operations administration by
allowing maintenance of a single server for multiple applica-
tions, and allows for cross-promotion of client applications
using the server.

The ChuckPad ChucK Renderer is a Docker image that
configures a Linux operating system to run a simple render-
ing server. This image includes both ChucK and general-
purpose audio encoders. The server can receive code, com-
pile it with ChucK, and output the audio result to a WAV
file. Using FFmpeg the WAV files are converted to AAC
files, reducing the file size while maintaining audio quality
losses within acceptable levels. The renderer also hashes
all source code and stores that information alongside the fi-
nal AAC output; when a request that has been synthesized
already hits the renderer, the server is able to simply and
quickly serve the AAC output.

5. CONCLUSIONS
ChuckPad is a tool to allow ChucK programmers to easily
archive and share their software written in ChucK, and to
browse shared programs written by others. Its goals are
to promote dissemination of interesting ChucK code, pro-
vide resources for learning about and experimenting with
ChucK, and build a community around the sharing of cre-
ative code. ChuckPad’s modular open-source architecture
facilitates the creation of similar services for other program-
ming languages and tools.

The source code for ChuckPad is available online at the
following URLs:

• Core ChuckPad server component: https://github.
com/markcerqueira/chuckpad-social

• ChuckPad renderer: https://github.com/markcerqueira/
chuck-renderer

• ChuckPad iOS Client Library: https://github.com/
markcerqueira/chuckpad-social-ios

5.1 Future Work
The authors have considered a number of features that
can be added to enhance the social experience of Chuck-
Pad. The ability to follow users, rate patches, comment
on patches, and personalize feeds of code could further en-
hance the sense of community around the content being
produced and curated. Future development on the back-
end infrastructure could add support for additional client
applications as well as multi-file support, allowing for more
elaborate (and modular) ChucK programs.

6. ACKNOWLEDGMENTS
Many thanks to Kirill Zhukov for code reviews, Tom Lieber
for Ruby advice, and Ji-hern Baek for figure design. We
would also like to thank all the open source contributors
that built the components that power ChuckPad.

7. REFERENCES
[1] Sketchpad. http://sketchpad.cc/.

[2] N. Collins, A. McLean, J. Rohrhuber, and A. Ward.
Live coding in laptop performance. Organised Sound,
8(3):321–330, 2003.

[3] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social
coding in github: transparency and collaboration in
an open software repository. In Proceedings of the
ACM 2012 conference on Computer Supported
Cooperative Work, pages 1277–1286. ACM, 2012.

[4] J. Freeman and A. Van Troyer. Collaborative textual
improvisation in a laptop ensemble. Computer Music
Journal, 35(2):8–21, 2011.

[5] P. Jeremias and I. Quilez. Shadertoy: Live coding for
reactive shaders. In ACM SIGGRAPH 2013
Computer Animation Festival, pages 1–1. ACM, 2013.

[6] S. W. Lee, A. D. de Carvalho Jr, and G. Essl. Crowd
in c[loud]: Audience participation music with online
dating metaphor using cloud service. In Web Audio
Conference, 2016.

[7] S. W. Lee and G. Essl. Communication, control, and
state sharing in networked collaborative live coding.
In Proceedings of the International Conference on
New Interfaces for Musical Expression, 2014.

[8] S. W. Lee and G. Essl. Models and opportunities for
networked live coding. In Live Coding and
Collaboration Symposium, volume 1001, pages
48109–2121, 2014.

[9] J. McCartney. Rethinking the computer music
language: Supercollider. Computer Music Journal,
26(4):61–68, 2002.

[10] C. McKinney. Quick live coding collaboration in the
web browser. In Proceedings of the International
Conference on New Interfaces for Musical Expression,
pages 379–382, 2014.

[11] R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and
K. Schneider. Creating a shared understanding of
testing culture on a social coding site. In 2013 35th
International Conference on Software Engineering,
pages 112–121. IEEE, 2013.

[12] C. Roberts and J. Kuchera-Morin. Gibber: Live
coding audio in the browser. In Proceedings of the
International Computer Music Conference, 2012.

[13] S. Salazar and G. Wang. Auraglyph: Handwritten
computer music composition and design. In
Proceedings of the International Conference on New
Interfaces for Musical Expression, pages 106–109,
2014.

[14] S. Salazar and G. Wang. miniAudicle for iPad:
Touchscreen-based music software programming. In
Proceedings of the International Computer Music
Conference, 2014.

[15] A. Sorensen. Impromptu: An interactive
programming environment for composition and
performance. In Proceedings of the Australasian
Computer Music Conference, 2005.

[16] D. Stowell. sc140. http://supercollider.github.
io/community/sc140.html, 2009.

[17] G. Wang, P. R. Cook, and S. Salazar. Chuck: A
strongly timed computer music language. Computer
Music Journal, 39(4):10–29, 2015.

[18] G. Wang, A. Misra, P. Davidson, and P. R. Cook.
CoAudicle: A collaborative audio programming space.
In Proceedings of the International Computer Music
Conference, 2005.

[19] M. Wright and A. Freed. Open Sound Control: A new
protocol for communicating with sound synthesizers.
In Proceedings of the International Computer Music
Conference, 1997.

240

https://github.com/markcerqueira/chuckpad-social
https://github.com/markcerqueira/chuckpad-social
https://github.com/markcerqueira/chuck-renderer
https://github.com/markcerqueira/chuck-renderer
https://github.com/markcerqueira/chuckpad-social-ios
https://github.com/markcerqueira/chuckpad-social-ios
http://sketchpad.cc/
http://supercollider.github.io/community/sc140.html
http://supercollider.github.io/community/sc140.html

