
An Intelligent Drum Machine for Electronic Dance Music
Production and Performance

Richard Vogl,1,2 Peter Knees1

1 Institute of Software Technology & Interactive Systems, Vienna University of Technology, Austria
2 Department of Computational Perception, Johannes Kepler University, Linz, Austria

richard.vogl@{tuwien.ac.at, jku.at}, peter.knees@tuwien.ac.at

ABSTRACT
An important part of electronic dance music (EDM) is the
so-called beat. It is defined by the drum track of the piece
and is a style defining element. While producing EDM, cre-
ating the drum track tends to be delicate, yet labor intensive
work. In this work we present a touch-interface-based pro-
totype with the goal to simplify this task. The prototype
aims at supporting musicians to create rhythmic patterns
in the context of EDM production and live performances.
Starting with a seed pattern which is provided by the user,
a list of variations with varying degree of deviation from
the seed pattern is generated. The interface provides sim-
ple ways to enter, edit, visualize and browse through the
patterns. Variations are generated by means of an artifi-
cial neural network which is trained on a database of drum
rhythm patterns extracted from a commercial drum loop
library. To evaluate the user interface as well as the quality
of the generated patterns a user study with experts in EDM
production was conducted. It was found that participants
responded positively to the user interface and the quality of
the generated patterns. Furthermore, the experts consider
the prototype helpful for both studio production situations
and live performances.

Author Keywords
Rhythm pattern generation; restricted Boltzmann machines;
machine learning; neural networks; generative stochastic
models.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Graphical user interfaces, Input
devices and strategies

1. INTRODUCTION
Electronic dance music (EDM) covers a wide range of gen-
res with common production techniques, heavily utilizing
synthesizers, sampling, digital effects, and sequencer soft-
ware or digital audio workstations (DAWs). While these
tools are nowadays also used in rock, pop, and other music
production processes, they are more prominently featured
in and are the foundation of EDM.

An important stylistic property of most EDM genres is
the utilization of style-specific repetitive rhythmic patterns,

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’17, May 15-19, 2017, Aalborg University Copenhagen, Denmark.

the so-called beat. For shaping and defining the beat, the
drum track of the piece and its rhythmic interaction with
other instruments are essential. Creating the drum track
of an EDM arrangement is, therefore, of high importance
and can be time consuming. In this paper we present an
intelligent software prototype — implemented as touch in-
terface on a tablet computer — aiming at helping musicians
to accomplish this task. More precisely, the developed pro-
totype supports the musician or producer of an EDM track
in adding variation to a drum track by intelligently provid-
ing creative input for drum pattern creation.

In the prototype’s current implementation, we use a step
sequencer representation for drum patterns with four drum
instruments (kick, snare, hi-hat, open hi-hat) and 16 steps
at which these instruments can be either on or off. As arti-
ficial intelligence engine, a generative stochastic neural net-
work, concretely a restricted Boltzmann machine trained on
EDM drum patterns, is implemented. It is used to gener-
ate stylistically suited variations of a given drum pattern.
In this context, using loops from drum libraries is usually
undesired because it makes the results predictable, boring,
and available to everyone (regardless of skill), putting artis-
tic identity in jeopardy. Ultimately, the prototype aims
at supporting musicians to create original and interesting
rhythmic patterns in the context of EDM production and
live performances. To assess the suitability of the presented
approach in these tasks, we performed a qualitative user
study with expert users in electronic music production. We
discuss the outcomes of this study after reviewing related
work and detailing the algorithmic and technical implemen-
tation.

2. RELATED WORK
There are only a few commercial products for automated
rhythmic pattern variation and creation. With Groove Agent,1

Steinberg provides a drum plugin covering a wide variety of
drum kits and loops. It also features a mode which allows
variation of the complexity of patterns on the fly. Apple’s
DAW, Logic Pro,2 features an automatic drummer plugin
which allows the user to select a certain drum kit sound
and music style. The patterns played can be changed by
controlling complexity and loudness in a two-dimensional
system using an x/y pad. These tools aim at amateur and
semi-professional production and recording of alternative
and rock tracks, and find therefore little use in EDM pro-
ductions.

In the work of Kaliakatsos-Papakostas et al. [8], a method
for automatic drum rhythm generation based on genetic al-
gorithms is introduced. The method creates variations of a
rhythm pattern and allows the user to change parameters

1
http://www.steinberg.net/en/products/vst/groove_agent

2
http://www.apple.com/logic-pro

251



such as level of variation between the original and the gener-
ated patterns. In the work of Ó Nuanáin et al. [9] a similar
method for rhythm pattern variation is presented using ge-
netic algorithms in combination with different, more simple,
fitness functions. This approach was one of the methods
evaluated in [19] where it has been shown that it is more
difficult to generate patterns with consistent style using ge-
netic algorithms.

When working with lists of rhythm patterns and sorting
or ranking is required, similarity measures for such patterns
are needed. In the work of Toussaint [15] several similarity
measures for rhythmic patterns are discussed: The Ham-
ming distance, edit distance, Euclidean distance of inter-
onset-interval vectors, and the interval-ratio-distance are
compared by building phylogenetic trees based on the com-
puted distance matrices. Holzapfel and Stylianou [6] use
audio signals as input and present a tempo invariant rhyth-
mic similarity measure utilizing the scale transform. Other
methods which can be applied to audio signals are presented
by Jensen et al. [7] as well as Gruhne and Dittmar [4]. Both
works obtain tempo invariant rhythmic features by applying
logarithmic autocorrelation to different onset density func-
tions. Since this work focuses on the use of symbolic rep-
resentations of rhythm patterns, similarity measures based
on audio signals are unsuitable. Therefore, primarily the
methods compared in [15] were relevant.

A group of widely used generative models are restricted
Boltzmann machines (RBMs) [11, 5]. Battenberg et al. [1]
use a variation, the conditional RBM, to analyze drum pat-
terns and classify their meter. They mention the capabil-
ity of the learned model to generate drum patterns simi-
lar to the training data given a seed pattern. Boulanger-
Lewandowski et al. [2] use an extension of an RBM with re-
current connections to model and generate polyphonic mu-
sic. In the work of Vogl and Knees [18] a drum pattern
variation method based on an RBM is demonstrated. In
[19] different pattern variation methods for drum rhythm
generation are evaluated using two user studies. It shows
that RBMs are capable of reasonably generating drum pat-
terns.

In the current work, a system which is able to create
meaningful variations of a seed pattern is presented. Weak-
nesses identified in the interface in [19] are considered and a
touch-interface-based prototype is introduced. The RBM-
based variation method is further improved and the system
is evaluated using a qualitative user study involving ten ex-
perts in electronic music production.

3. INTELLIGENT PATTERN VARIATION
METHOD

The centerpiece of the prototype is the artificial intelligence
driven pattern variation engine. Its task is to create rhythm
patterns as variations of a seed pattern utilizing sampling
of an RBM. For the training of the RBM a data set of EDM
and urban music drum rhythm patterns had to be created.
RBMs are two layered neural networks which can be used to
generate patters. Fig. 1 shows the basic structure and com-
ponents of a simple RBM. This pattern generation method
was chosen for several reasons. Training and sampling of
RBMs is well researched and RBMs have been shown to
be applicable for pattern generation in general. Further-
more, sampling of RBMs is computationally efficient and
can be performed sufficiently fast also on low-end portable
devices to ensure reasonable response times for user inter-
action. When sampling from RBMs, a seed pattern, which
determines the characteristics of the generated patterns, can
be provided.

v1 v2 v3 v4

h1 h2 h3

Figure 1: Simplified visualization of the structure of
RBMs. The lower layer in white represents the vis-
ible nodes (vn) while the upper layer in gray repre-
sents the hidden nodes (hm). Every connection be-
tween two nodes has an assigned weight (wmn) and
every node has its own bias value (bvn and bhm for
visible and hidden nodes respectively – not shown
in the diagram).

3.1 Training Data Set
For training, a data set of 2,752 unique one-bar drum pat-
terns containing bass drum, snare drum, and hi-hat onsets
was used. The patterns were taken from the sample drum
loop library of Native Instrument’s Maschine3. The ex-
ported patterns were split into one bar segments, quantized
to 16th notes, and converted into a 64 bit (for the 4 by 16
rhythm patterns) binary vector format. Finally, duplicate
patterns, as well as patterns which did not meet musical
constraints were removed. Only patterns with two to six
bass drum notes per bar, one to five snare drum notes, and
at least two hi-hat notes were kept. This was done to ex-
clude very sparse breaks as well as too dense fills from the
data set. The Maschine library contains drum patterns for
EDM and other urban music like Hip Hop and RnB. Since
the main focus of this work is EDM, this library was well
suited.

3.2 Network Training
The used RBM consists of 64 visible nodes, which repre-
sent the 16 by 4 drum patterns (16 steps per bar for four
instruments), and 500 nodes in the hidden layer. The train-
ing for the RBM was performed using the lrn2 framework
of the lrn2cre8 project4. As training algorithm, persistent
contrastive divergence (PCD) introduced by Tieleman et
al. [14] was used. This method represents an improved ver-
sion of the well-known contrastive divergence (CD) method
introduced by Hinton et al. [5] in 2006. Additionally, latent
selectivity and sparsity as described in the work of Goh et
al. [3] as well as Drop-out [13] was used to reduce overfitting.

The output of a training run are the weights and biases
of the neural network. These are used by the variation
algorithm to create the rhythm patterns in the context of
the provided seed pattern.

3.3 Pattern Generation
While training of the RBM is similar to [19], the pattern
generation was adapted to overcome shortcomings of the
method identified in the evaluation of [19].

To use the trained RBM for pattern generation, the seed
pattern is first converted to the 64 bit vector format by
concatenating the 16 steps of the sequencer grid of each
instrument (cf. fig. 2). This vector is then used as input for
the visible layer of the RBM. In contrast to [19] no clamping
is used and variations are generated for all instruments at

3
http://www.native-instruments.com/en/products/maschine/

production-systems/maschine-studio/
4
http://lrn2cre8.eu/

252



0

10

20

30

40

50

60

G
ib
b
s 
st
e
p

0

bass drum

16

snare drum

32

hi-hat

48

open hi-hat

64
RBM visible node index

Figure 2: Values of visible layer nodes of the RBM
while creating pattern variations. The x-axis repre-
sents the index of the visible node. On the y-axis,
the number of Gibbs step is indicated starting at the
top with the original input pattern and progressing
downwards. Black pixels represent 1 and white 0.
Only the first 64 iterations of Gibbs sampling are
shown.

once using Gibbs sampling.
A Gibbs sampling step consists of: i. Calculating the val-

ues of the hidden layer (hm) by multiplying the input layer’s
values (in) with the corresponding weights (wnm) plus bias
of the hidden layer (bhm):

hm = bhm +

N∑
n=0

in · wnm (1)

where N is the total number of nodes in the visible layer.
ii. Applying the logistic sigmoid function to map the val-
ues of the hidden layer into the interval [0, 1] (hsm) and
subsequent binarization with random threshold (sampling):

hsm =
1 + tanh(hm

2
)

2
(2)

hbm =

{
1, for hsm ≥ t

0, else
(3)

where t is a random threshold in the interval [0, 1] and hbm
is the binarized value of hm. iii. Calculating the updated
values for the visible layer by multiplying the values of the
hidden layer with the corresponding weights (wnm) plus bias
of the visible layer (bvn):

in = bvn +

M∑
m=0

hbm · wnm (4)

where M is the total number of nodes in the hidden layer.
To visualize this, fig. 2 shows the values of the nodes in the
visible layer during several steps of Gibbs sampling.

In contrast to the pattern variation method used in [19],
in this work for every seed pattern 64 variations are gener-
ated and only the most suitable (i.e., similar) 32 patterns
are presented to the user. This is done to achieve a greater
possibility of obtaining an equal number of more dense and
more sparse variations. Furthermore, patterns which are
very dissimilar to the seed pattern can be discarded.

To arrange the generated patterns in a meaningful way,
the patterns are sorted in two steps. First, the patterns
are divided into two lists according to the number of active
notes in them. One list contains patterns with fewer active

notes than the seed pattern (sparse list), while the other one
contains only pattern with more or equal number of active
notes (dense list). Second, these lists are sorted according
to their similarity to the seed pattern. To build the final
list used for the variation dial, the 16 most similar patterns
from the sparse list are arranged ascending, followed by the
seed pattern, followed by the 16 most similar patterns from
the dense list arranged descending. It should be noted that
in rare cases, given a very sparse or dense seed pattern, it
may occur that the 64 generated variations do not contain
16 more dense or more sparse patterns. In that case more
patterns from the other sub list are used to obtain a final
list size of 32 patterns.

3.4 Distance Measure
To sort the pattern lists, a similarity measure for rhythm
patterns is required. Although Toussaint [15] observes that
the Hamming distance is only moderately suited as a dis-
tance measure for rhythmic patterns, it is widely used in
the literature (see [9, 10, 19]). Since the requirements in
this work are similar to the ones in [19], likewise a modified
Hamming distance is implemented. To calculate the stan-
dard Hamming distance, simply the differences between the
binary vectors of the two rhythm patterns are counted. I.e.
for every note in the 16-by-4 grid a check is performed if
its state is the same (on/off) in both patterns. If it is not,
the distance is increased by one. The modified Hamming
distance used in this work weights the individual instru-
ments differently: Differences in the bass drum track con-
tribute with four to the distance, snare drum notes with
eight, closed hi-hat notes with one, and open hi-hat notes
with four. This is done to take the importance of the
drum instruments regarding the perceived differences be-
tween rhythm patterns into account. While additional or
missing closed hi-hat notes only change the overall rhyth-
mic feel of a pattern very little, additional snare drum or
bass drum notes often change the style of the pattern com-
pletely. The values for the weighting were determined ex-
perimentally and using the results of the web survey in [19].

4. USER INTERFACE
In fig. 3, a screenshot of the prototype’s UI is shown. For
input and visualization of drum patterns in the UI, the well
established step sequencer concept is employed. A drum
step sequencer, as for example the famous hardware se-
quencer Roland TR-808, allows the user to activate certain
notes for different drum instruments by pressing push but-
tons in a fixed grid. These patterns are then played back
in an endless loop. This concept was used since it is one
of the prevalent drum machine interfaces for EDM produc-
tion. Drum patterns used in this work consist of one bar
with notes for bass drum, snare drum, open and closed hi-
hat. The time grid resolution is quantized to 16th notes,
which is simplification commonly used in step sequencers.
The controls for pattern variation are implemented as two
buttons (set/reset) and a central dial on which the vari-
ations are placed ordered by sparsity and distance to the
seed pattern. Variations are generated by pressing the set
button. The seed pattern is expected not to be highly com-
plex, nor too simple, to give the variation algorithm enough
freedom to find variations in both directions. During ex-
ploration of the patterns, the seed pattern can always be
quickly accessed by pressing the “reset” button.

Next to the pattern variation controls a start/pause play-
back button and knobs to control the tempo in beats per
minute (BPM) and the ratio of swing for 8th notes can be
found. The selected tempo and swing-ratio do not affect
the pattern variation but rather provide the possibility to

253



Figure 3: Screenshot of the UI. It consists of a 4 by
16 button array which poses as the visualization and
input of the step sequencer. Beneath it are pattern
storage, controls for playback, the pattern variation
controls, and controls for tempo and swing. The
blue blocks in the lower half of a step sequencer
block visualize the pattern under preview. It can
be activated by pressing the blue commit button in
the pattern variation control section of the UI.

tune the rendering of the entered beat to match the musical
style desired by the user.

The utilization of a touch-base interface allows the user to
enter and change patterns in the step sequencer grid more
easily and without the use of a mouse or track pad. This
is expected to improve the acceptance of such a tool in live
environments where simplicity and robustness of the input
methods are obligatory. On the other hand this means that
a widespread and accepted input method, namely physi-
cal knobs of MIDI controllers are not necessary, since all
knobs can be controlled via the touch surface. While it
is possible to map the input knobs and buttons to exter-
nal MIDI controllers, in this work, another input method,
namely knobs which can be used on the touch surface were
evaluated. Fig. 4 shows the usage of such knobs on an iPad
running the software prototype. The concept of physical
knobs which can be used on a touch interface is not new
(see e.g. ROTOR5 or Tuna Knobs6). Using such knobs al-
lows the combination of two powerful input methods with
individual strengths. While the multi-touch interface pro-
vides an easy way of manipulating rhythm patterns, phys-
ical knobs might provide a greater degree of precision than
fingers on a touch interface.

Improvements proposed in [19] cover: i. a pattern stor-
age, ii. an optional pattern preview system, and iii. the
possibility to activate new patterns only at the start of a
new bar.

The pattern storage which is located beneath the step
sequencer grid can be used to store patterns by tapping the
plus sign. Stored patterns are displayed as a list of small
thumbnails of the sequencer grid and can be brought back
to the step sequencer by tapping the patterns. The store
can be cleared using the “clear store” button beneath the
store grid.

The pattern preview function is integrated into the step
sequencer. When the preview is switched on, the active
pattern is depicted using white blocks in the sequencer. If
the variation dial is used to browse through the variations,

5
http://reactable.com/rotor/

6
http://www.tunadjgear.com/

Figure 4: A physical knob used to control the varia-
tion dial on the touch surface. While the used knob
is an improvised prototype, commercial products
already exist for this purpose.

they are not immediately used for playback but rather visu-
alized as blue blocks in the lower half of the step sequencer
grid. See fig. 3 which shows a screenshot of a pattern being
visualized in preview mode while another pattern is active.
To use the currently previewed pattern, the commit button
(“cmt”) has to be pressed.

The prototype can be synchronized with other instru-
ments using Ableton’s Link technology.7 The output of the
prototype is sent via MIDI to be further processed in a DAW
or synthesized using an external MIDI instrument. Alter-
natively, an internal drum synthesizer can be used to render
audio playback of the patterns.

5. EVALUATION
To evaluate the interaction with the prototype as well as the
quality of the generated patterns compared to the prototype
presented in [18], a qualitative user study was conducted.
To this end, experts were interviewed using a questionnaire
as guideline. The experts were required to have experi-
ence in i. using DAWs or similar music production soft-
ware, ii. producing or performing electronic music live, and
iii. using drum step sequencers and/or drum roll editors.
The software prototype used in [19] was made available by
the authors as accompanying materials of the article8.

During a session, participants were introduced to the two
prototypes and the aim and functionality was explained.
They were asked to input rhythm patterns they usually
work with and let the prototype generate a list of varia-
tions for these patterns. After browsing through the pat-
terns and exploring the features of the systems, users were
interviewed about their experience with the prototypes and
their preferences. Specifically, they were asked to rate the
following properties on five point Likert scales: i. The us-
ability of the prototypes, ii. the application of such a tool
in a live performance or iii. in a studio production envi-
ronment, iv. preferred input method (MIDI controller and
mouse, touch interface, or touch interface combined with
physical knobs), and v. usefulness of the additional features
in the touch-interface-based prototype.

Additionally to the UI evaluation, the differences between
the pattern variation algorithms were also tested. To this

7
https://www.ableton.com/en/link/

8
https://github.com/GiantSteps/rhythm-pattern-variation-study

254



Vogl et al. [19] Present work
Consistency 3.7 3.9
Musicality 4.2 4.4
Difference 3.2 2.9
Difference RMSE 0.6 0.3
Interestingness 3.8 4.0
Substitute 3.8 4.4
Fill 4.0 3.6

Table 1: Mean values of participant rating for the
two algorithms. For difference additionally the
RMSE to the neutral value (3) is provided.

end, both algorithms were implemented in the touch-interface-
based prototype. Participants were asked to browse through
variation lists generated by both algorithms for seed pat-
terns of their choice. After that, they were asked to rate
both algorithms in the following categories on five point Lik-
ert scales: i. Consistency of the variations with the seed pat-
tern, ii. musicality and meaningfulness of created patterns,
iii. difference of created patterns to the seed pattern, iv. cre-
ativity and interestingness of created patterns, v. suitability
of created patterns for a continuous beat, and vi. suitability
of patterns for fills or breaks. These categories correspond
roughly to the ones used in the web survey in [19]. The
order in which the algorithms were tested was randomized
to avoid experimenter bias. The Likert scale for the dif-
ference rating ranged from “too similar” to “too different”,
therefore the optimal answer “just right” was placed in the
middle. This is also reflected in the evaluation section: For
the difference ratings additionally root mean square errors
(RMSE) towards the optimal value (3) are provided.

A more general discussion including topics like the proto-
type’s concept and applicability, positive and negative ex-
periences during the experiment, UI details, missing fea-
tures, and the participant’s usual workflow and preferred
tools concluded the sessions.

6. RESULTS AND DISCUSSION
The interviews were conducted during the period between
June and October of 2016. In total ten experts participated
in the survey. Their mean age is 31.1, the gender distri-
bution is 9 male and one self-identified neither as male nor
female. Seven participants had formal musical education
whereas three are autodidacts. Eight participants actively
play an instrument and all use DAWs on a regular basis,
are familiar with step sequencers and have several years of
experience in electronic music production.

Tab. 1 shows the mean values for the participants’ rat-
ings of the comparison between the variation algorithm used
in [19] (top) and the one presented in this work (bottom).
Since the number of participants of ten is too low for mean-
ingful statistical significance analysis the numbers merely
indicate tendencies. Nevertheless, a Wilcoxon signed ranks
test was used to test for significance in the rating differences
in aspects of the two UIs, and the two variation algorithms.
As expected, the observed improvements are not significant
(alpha=.05) due to small sample size, except for assessment
of usability, where the touch based UI was considered better
usable. The ratings in combination with in depth discus-
sions with the participants show a clear preference towards
the UI and variation generation algorithm presented in this
work. The only exception being the suitability of the gen-
erated patterns for fills. This can be explained by the fact
that outlier patterns are discarded by the variation algo-
rithm and therefore it produces patterns more similar to
the seed pattern, which may be less suitable for fills. The

exact definition of fills depends on the music style, e.g. the
“amen-break” is originally a fill but forms the basis of the
continuous rhythms in drum-and-bass and breakbeat mu-
sic. Generally, patterns which greatly differ from the basic
rhythms, but somehow fit the given style can be considered
as fills and breaks. For the tasks at hand, we relied on the
individual understanding and definition of the expert users.

Tendencies regarding the ratings for the UI are similarly
consistent. Ratings for usability are significantly higher for
the touch interface (mean: 4.7/4.3). The difference is even
greater for the suitability in live scenarios (mean: 4.0/3.5).
While 50% of the participants uttered concerns about the
practicality of using a mouse to enter rhythm patterns on
stage, only two participants were concerned that the touch
device is not suitable for a live performance. One partic-
ipant’s reservations regarding the touch interface did not
concern the way of interaction but rather if the hardware
(iPad) would survive the harsh conditions on stage and on
the road (heat, mechanical strain, spilled drinks, etc.). The
second one raised concerns regarding the touch interface’s
precision and reliability in a live environment. Regarding
the applicability of the prototypes in a studio or production
setting, the difference was smaller, but still in favor of the
touch based prototype (mean: 4.7/4.6). The comment of
one participant nicely summarizes the tenor of the users:

“Using the touch interface is definitely faster and
easier [...] compared to entering patterns with a
mouse.” Participant03

Regarding the preferences of the input method, a clear
tendency towards the touch interface was observable: Six
participants preferred the touch interface, three were un-
decided, and only one voted in favor of the physical con-
troller and mouse system. Regarding the touch-compatible
physical knob prototypes, seven participants preferred the
touch-only approach, one was undecided, and two preferred
using the physical knobs.

The additional features were generally received very pos-
itively. Only two participants were unsure if the feature to
start new patterns only with a new bar was useful. All other
participants were in favor for all three additional features.

In the discussions with the participants several key mes-
sages were identified. Three participants considered the ar-
rangement of the patterns in the one-dimensional list of the
variation wheel as being unclear or ambiguous:

“It seems a bit random to me. I can browse
through the list [...] but I cannot look for some-
thing specific.” Participant04

While the idea of a simple one-dimensional variation dial
introduced in [18] was well suited to conduct experiments
regarding the quality of variation algorithms, it might be
an over-simplification for user interaction. After all two
different properties (sparseness and similarity) are projected
into one dimension. Participants suggested to solve this by
adding the option to change the sorting of the list or by
using an x/y variation pad similar to the one used for the
Drummer plugin of the Logic Pro DAW.

While the visual preview was a well received feature,
two participants missed an acoustic preview or “pre-listen”
mode. Finding suitable audio material for remixing by lis-
tening to it on separate headphones is a common technique
used by DJs in live situations.

Almost all participants (8/10) mentioned that they use a
drum roll editor within their DAW to produce drum rhythm
patterns. One explicitly stated that he tries to avoid it:

“I use the piano roll editor in Cubase if I have
to, but it is a real pain.” Participant04

255



7. CONCLUSION
In this work we presented a touch-interface-based proto-
type to assist musicians and producers in the context of
EDM production with creating the drum track. This is
accomplished by providing variations of a basic rhythmic
pattern entered by the user. The variations are created
utilizing Gibbs sampling of an RBM trained on appropri-
ate rhythm patterns. The implemented method builds on
established algorithms and improves them. Accessing and
browsing through the patterns is accomplished using a sim-
ple interface built around a central dial.

A user study was conducted to evaluated both the pat-
tern variation algorithm as well as the user interface of the
prototype. The results of the study show that musicians
and producers consider the interface intuitive. It is also
shown that acceptance of the system in a live scenario is
higher than for the compared prototype while acceptance
in a production setting is still given. The pattern variation
algorithm was considered to produce patterns more consis-
tent with the seed pattern than the compared system, but
only at the expense of the capability to create patterns suit-
able for fills and breaks.

The UI incorporates additional features requested by par-
ticipants of a similar study. These features cover a preview
for generated patterns, a pattern storage, and the ability
to start patterns only at bar changes. These features were
received positively by the participants. While the idea of
using physical knobs on a touch interface was interesting
for many participants, most participants preferred using a
simple touch interface without additional knobs, especially
in live settings.

Considering the feedback of the expert users, it can be
concluded that such a system could find acceptance in the
area of EDM production and performance. To achieve this,
the prototype will still have to be improved in regard of the
UI’s visual design as well as the arrangement and browsing
metaphor of the drum patterns.

To support more drum instruments prevalent in EDM
production a larger and more diverse training data set for
the variation method will be necessary. To obtain such a
data set, automatic drum transcription methods (e.g., [17,
12, 16, 20]) could be utilized. Using such an approach would
also allow to expand this method to be applicable on other
music genres outside of EDM. However, to gain acceptance
in the community of producers and musicians of other music
genres an entirely different approach for pattern visualiza-
tion and input might be required, since the used step se-
quencer representation is, at the moment, prominently tied
to the field of EDM production. Nonetheless, from the re-
sults obtained in this study, we are confident that the use of
generative models provides a valuable addition to the cur-
rent paradigms of music production practice and helps in
building intelligent and therefore more intuitive and effec-
tive interfaces.

8. ACKNOWLEDGMENTS
We thank Matthias Leimeister for extracting the MIDI and
text mapping for the Maschine sample drum loop library.
This work was supported by the European Union FP7 through
the GiantSteps project (grant agreement no. 610591) and
the Austrian FFG under the BRIDGE 1 project Smarter-
Jam (858514).

9. REFERENCES
[1] E. Battenberg and D. Wessel. Analyzing drum

patterns using conditional deep belief networks. In
Proc 13th ISMIR, 2012.

[2] N. Boulanger-Lewandowski, Y. Bengio, and
P. Vincent. Modeling temporal dependencies in
high-dimensional sequences: Application to
polyphonic music generation and transcription. In
Proc 29th ICML, 2012.

[3] H. Goh, N. Thome, and M. Cord. Biasing restricted
boltzmann machines to manipulate latent selectivity
and sparsity. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2010.

[4] M. Gruhne and C. Dittmar. Improving rhythmic
pattern features based on logarithmic preprocessing.
In Proc 126th AES Convention, 2009.

[5] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast
learning algorithm for deep belief nets. Neural
Computation, 18(7):1527–1554, July 2006.

[6] A. Holzapfel and Y. Stylianou. Scale transform in
rhythmic similarity of music. IEEE TASLP,
19(1):176–185, 2011.

[7] J. H. Jensen, M. G. Christensen, and S. H. Jensen. A
tempo-insensitive representation of rhythmic patterns.
In Proc 17th EUSIPCO, 2009.

[8] M. A. Kaliakatsos-Papakostas, A. Floros, and M. N.
Vrahatis. evodrummer: Deriving rhythmic patterns
through interactive genetic algorithms. In
Evolutionary and Biologically Inspired Music, Sound,
Art and Design, LNCS vol 7834, 2013.

[9] C. Ó Nuanáin, P. Herrera, and S. Jordà. Target-based
rhythmic pattern generation and variation with
genetic algorithms. In Proc 12th Sound and Music
Computing Conference, 2015.

[10] J.-F. Paiement, Y. Grandvalet, S. Bengio, and
D. Eck. A generative model for rhythms. In NIPS
Workshop on Brain, Music and Cognition, 2007.

[11] P. Smolensky. Information processing in dynamical
systems: Foundations of harmony theory. In Parallel
Distributed Processing: Explorations in the
Microstructure of Cognition, Vol. 1, pages 194–281.
MIT Press, 1986.

[12] C. Southall, R. Stables, and J. Hockman. Automatic
drum transcription using bidirectional recurrent
neural networks. In Proc 17th ISMIR, 2016.

[13] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov. Dropout: A simple way to
prevent neural networks from overfitting. JMLR,
15(1):1929–1958, June 2014.

[14] T. Tieleman and G. Hinton. Using fast weights to
improve persistent contrastive divergence. In Proc
26th ICML, 2009.

[15] G. Toussaint. A comparison of rhythmic similarity
measures. In Proc 5th ISMIR, 2004.

[16] R. Vogl, M. Dorfer, and P. Knees. Recurrent neural
networks for drum transcription. In Proc 17th ISMIR,
2016.

[17] R. Vogl, M. Dorfer, and P. Knees. Drum transcription
from polyphonic music with recurrent neural
networks. In Proc 42nd ICASSP, 2017.

[18] R. Vogl and P. Knees. An intelligent musical rhythm
variation interface. In IUI Companion, 2016.

[19] R. Vogl, M. Leimeister, C. Ó. Nuanáin, S. Jordà,
M. Hlatky, and P. Knees. An intelligent interface for
drum pattern variation and comparative evaluation of
algorithms. JAES, 64(7/8):503–513, 2016.

[20] C.-W. Wu and A. Lerch. Drum transcription using
partially Fixed Non-Negative Matrix Factorization
with Template Adaptation. In Proc 16th ISMIR, 2015.

256


