
Live Coding YouTube: Organizing Streaming Media for an
Audiovisual Performance

Sang Won Lee
Computer Science and

Engineering
University of Michigan

2260 Hayward Ave
Ann Arbor, MI 48109-2121

snaglee@umich.edu

Jungho Bang
Electrical Engineering &

Computer Science
University of Michigan

2260 Hayward Ave
Ann Arbor, MI 48109-2121

bjungho@umich.edu

Georg Essl
College of Letters & Science

University of Wisconsin -
Milwaukee

2442 E Hartford Ave.
Milwaukee, WI 53211

essl@uwm.edu

ABSTRACT
Music listening has changed greatly with the emergence of
music streaming services, such as Spotify and YouTube. In
this paper, we discuss an artistic practice that organizes
streaming videos to perform a real-time improvisation via
live coding. A live coder uses any available video from
YouTube, a video streaming service, as source material to
perform an improvised audiovisual piece. The challenge is
to manipulate the emerging media that are streamed from a
cloud server. The musical gesture can be limited due to the
constrained functionalities of the YouTube API. However,
the potential sonic and visual space that a musician can ex-
plore is practically infinite. The practice embraces the jux-
taposition of manipulating emerging media in old-fashioned
ways similar to experimental musicians in the 60’s physi-
cally manipulating tape loops or scratching vinyl records on
a phonograph while exploring the expressiveness enabled by
the gigantic repository of all kinds of videos. In this paper,
we discuss the challenges of using streaming videos from the
platform as musical materials in live music performance and
introduce a live coding environment that we developed for
real-time improvisation.

Author Keywords
live coding, YouTube, streaming video, bricolage H.5.5 [In-
formation Interfaces and Presentation] Sound and Music
Computing

1. INTRODUCTION
How we listen to music has changed over a long period,
with the development of recording technology and its play-
back media. Before the time of recording technology, lis-
teners could enjoy music only by going to a musical perfor-
mance. Since we were able to record music performances,
new types of recording media have been invented, from vinyl
records to compact discs and mp3. Nowadays, most peo-
ple do not carry “physical” recording media for music lis-
tening. Instead, a piece of music can be streamed from a
cloud server on demand, which changes the ways in which
musicians are compensated. Whether we like it or not,
the streaming services now dominates the current music in-
dustry. For example, the U.S. music industry made more
money with streaming than physical media or digital down-
loads in 2015 [2]. Even a NIME music submission does
not accept non-streaming media (not even electronic files
like mp3) anymore. Instead, it asks participants to post

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’17, May 15-19, 2017, Aalborg University Copenhagen, Denmark.

documentation links from “streaming-only services such as
SoundCloud, Vimeo, and YouTube”.

The music recording media inspired pioneers to compose
music in different ways, such as by cutting and pasting mag-
netic tapes, scratching vinyl records, making dents in com-
pact discs and chopping a piece of music into audio sample
files for DJing. In this paper, we begin questioning what
kinds of new opportunities and challenges we have with the
today’s streaming media for new musical expression. We
choose YouTube, a commodity video streaming service, to
implement a real-time performance system. This idea is in
principle not limited to YouTube. Through their applica-
tion program interface (API), other streaming services could
be utilized in a comparable fashion. However, YouTube is
a useful example case as it allows to demonstrate the scale
and effect of this kind of performance. YouTube is a grand
repository of videos, including a large number of music and
non-music videos. The use of YouTube videos offers mu-
sicians the ability to retrieve any audiovisual samples on
the fly by searching keywords and by providing time offsets
to play them from. The participatory nature of YouTube
as a platform where anybody can easily generate content
cultivates the potential of an artistic practice that can be
accessible to both listeners and other musicians.

The idea of improvising on YouTube videos poses the
question of exploring methods and challenges in musically
“organizing” the vast amount of streaming media live. In
this paper, we developed a performance system for a mu-
sician to live-code YouTube videos in a web browser. We
review related works, discuss the challenges and opportuni-
ties of using streaming media, relate this work to previous
works in live coding, and address the technical challenges
and musical gestures in developing and performing a piece.

2. RELATED WORKS
2.1 Musical Experiments with Recording
The history of electronic music parallels artists’ experiments
using recording media in composition. John Cage’s assem-
bly of the Williams Mix exemplifies the use of recording
media in composition, cutting segments of magnetic tapes
on a piece of paper and splicing them into eight tapes that
are played simultaneously as a piece [7]. In, Studie I and
II, using additive synthesis, Stockhausen accumulates tapes
on top of each other or plays tapes of different tones in
rapid succession to create polyphonic structures [32, 33].
Recording non-musical sound (natural or industrial) led to
a new compositional practice that uses fixed media, such as
musique concrète [29] and SoundScape [30].

The use of recording media has been expanded to the live
performance practice. In Riley’s live performances of The
Gift, Baker and his quartet played live to the tapes to create
a tape delay sequence over which the live performers also
improvised [16]. Turntablism, whose precursor is early ex-

261

perimental music, is a well-known performance practice in
which a musician performs by physically manipulating vinyl
records, turntables (typically two), stylus, and mixer [14].
Yasunao Tone took a destructive approach in using record-
ing media where he damaged audio CDs and hacked the CD
player to create noise music [36]. Granular synthesis is a
modern compositional technique in computer music, which
manipulates sound samples temporally [40]. It has fre-
quently been used in live performance [37], leading to ded-
icated interfaces for real-time granular synthesis in NIME
contexts [8, 25, 26]. The use of video samples in composition
enables unique audiovisual performances that often result in
video mash-up not only in VJing cultures [12] but also in
context of NIME. For example, ‘sCrAmBlEd?HaCkZ!’ takes
audiovisual samples from popluar videos and remix them
based on the similarity to live input [18]. MadPad realizes
the grid of video samples that mimics an MPC controller
on a tablet [19].

With the emergence of streamed forms of audiovisual
samples, we started to witness interactive music systems
that utilize streamed audiovisual samples. MusicMapper re-
alizes a 2D representation of chopped audio samples streamed
from SoundCloud for remixing music [6]. TextAlive Online
generates a music video using kinetic typography by ana-
lyzing audio from music streaming services [17]. Gibber,
a web-based live coding environment, implements a func-
tion called “freesound” that lets a musician search an au-
dio sample from the freesound website and play a sequence
of the sample [27]. This paper was directly inspired by a
web-based live coding performance, The Last Cloud, which
manipulates various media on the web (audio, video, and
multiple web pages) and the grid of videos [35]. It is appar-
ent that recording media in its various manifestations have
inspired musicians to create new forms of composition and
performance practices. Hence it is important to note that
while the list of creative works in this category is vast, our
review here can by no means be complete.

While music streaming services dominate how people lis-
ten to music, it is not clear if it helped us create a new
art practice. This paper is an instance in response to the
anticipation of novel performance practices using streaming
media.

2.2 Why Live Code?
How do we perform with streaming media? While audiovi-
sual performances can be performed live with various kinds
of interfaces, from a MIDI controller to gesture recognitions,
we choose live coding to organize YouTube videos musically.
The reason is simple– it is the most basic way to control the
large scale video streaming. Live coding is a highly inter-
active programming practice where a programmer writes a
program that is currently running and the outcome of which
is typically electronic music [10]. Typically, live coding has
been known as a practice that generated sounds through al-
gorithmic means that were developed by interactively writ-
ing the code on stage. Hence the product of live coding is
typically sound synthesis and temporal algorithms that con-
trols the generated sound. However, the product of live cod-
ing in music performance can be expanded in various ways.
For example, the outcome can be real-time notation [23],
musical instruments [5, 22], audience participation [21] and
visualization [11]. Furthermore, live coding has been ex-
panded to non-musical domain: choreography [31], textile
patterns [9], scientific simulation [34], and programming
education [28]. Live coding allows a musician to control
audio-visual-temporal dimensions of YouTube videos with
a degree of automation. In addition, the canonical rule of
live coding to reveal the screen and show the code to the

audience will help them understand the algorithms of mu-
sical gesture by comprehensible naming convention, such as
loop, jump, and speed.

3. OPPORTUNITIES AND CHALLENGES
Before we introduce the performance system, we would like
to review the opportunities and challenges that this media
poses to musicians.

3.1 Infinite Audiovisual Samples
One of the biggest benefits of including streaming media in
interactive applications is that it provides a grand reposi-
tory of audiovisual files. The repository will not only have
music, but also, various kind of contents depending on the
characteristics of the service. For example, YouTube videos
can be music, live concerts, tutorials, commercials, movies
or possibly any video that users create. Therefore, the
process of exploring and selecting video samples that will
be used in a piece is a significant part of the composi-
tion. Musicians can also create materials by themselves and
make them readily available in certain cases asynchronously
(posting a video) or synchronously (e.g., YouTube Live).
Potentially, audience members can contribute to provide au-
diovisual samples during (or prior to) the concert; a similar
approach has been attempted under the context of mobile
phone orchestra [24]. Musicians do not need to “own” sonic
materials on their local machine but only has to draw on
samples from the services. Not only this will reduce the size
of the application but vastly expands the material a musi-
cian can improvise with on the fly. Similarly, the advantages
and challenges in streaming computer music applications
from a cloud server have been examined in [15].

3.2 Platform Dependent Practice
Many of the challenges in using streaming recording origi-
nate from the fact that the application depends on a specific
platform. Typically, commercial services, such as Spotify,
SoundCloud, Vimeo, or YouTube, are available options for
musicians. The challenges of using such services are left to
the musicians and are listed in the following subsections.

3.2.1 Limited Control of Streaming Services
The limited functionality in manipulating streaming media
musically is a technical challenge for musicians to perform
with those snippets. Typically, such streaming services pro-
vide an application program interface (API) to allow access
to the media via code. The API is, however, not designed
for artistic practices. The musicians’ challenge is then to
re-purpose the API, to develop the range of musical expres-
sion, and to compose (or improvise) music. In the later
section of this paper, we take YouTube as an instance and
explore what kinds of features are available for musicians.

3.2.2 Terms and Conditions
There are legal issues that arise from the fact that a musi-
cian does not “own” the content. As they do not own audio-
visual snippets and the platform, musicians need to agree
to terms and conditions of the platform. While copyright
infringement can be the aesthetic of the piece as in [18],
these terms may prohibit certain artistically desirable uses
of the media. We use YouTube as an example to describe
the challenge. Based on its terms [4], we cannot distribute
any part of the service or the content without authorization,
except the means that they provide (embeddable player) -
(4A). For example, downloading selected videos automat-
ically and manipulating them in non-YouTube players is
clearly a violation of the terms if it were for the public per-
formance. Another term indicates that we cannot “modify”

262

any part of the service (contents, the API functions of the
player) - (4B). Fortunately, the use of streaming media in
the performance practice that this paper suggests seems to
be within the range of the “fair use” , such as remixing as
a part of new expression [1]. We find performing the piece
in public is fine according to 4E of their terms (“showing
YouTube videos through the Embeddable Player on an ad-
enabled blog or website”) [4]. Many of these problems are
uncertain and vague and it is interesting for us that our per-
formance can create gray areas they may tighten or loosen
their terms or pose philosophical questions to the commu-
nities. For example, performing a piece on a web browser
in public is legal but distributing the performance video via
YouTube seems problematic (4A). Another interesting term
that we can potentially violate is that 4H. - “You agree not
to use or launch any automated system,(...) that accesses
the Service in a manner that sends more request messages
(...) than a human can reasonably produce...”. Is the use
of Is live coding an automated system or a human perfor-
mance? Is a live coder (or a musician with a musical in-
strument) human or an automated system? How many re-
quests can a human reasonably produce via live coding their
API functions? Another interesting fact is that not all the
countries allows streaming services. For example, according
to [38], YouTube is blocked in China, Iran and North Ko-
rea. We currently submitted a performance proposal to a
conference in one of these countries and will document the
whole process if the proposal gets accepted.

While these challenges may hinder artists who musically
manipulate streaming media, such constraints challenge them
to find ways to be expressive, given the technical and legal
boundaries. However, this is not different from any other
kind of computer music practices, which re-purpose exist-
ing objects physically or electronically for music making. In
fact, musicians have used a number of commodity hardware
and software (e.g., turntables, tape recorders, programming
languages, laptops, microcontroller kits, and mobile phones)
in the musical context, which later leads to artworks, schol-
arly research, and commercial products. It has been studied
that such constraints can yield a creative use of technology
and the development of new musical styles [13]. Therefore,
we rather see this as a different set of challenges in expand-
ing musical expression with this new media.

4. DESIGN AND IMPLEMENTATION
To explore the musical aesthetic enabled with the idea of
live coding YouTube videos, we present a performance sys-
tem in which a live coding musician can retrieve YouTube
videos and organize them musically. The performance sys-
tem has been used by the authors to perform a structured
improvisation piece that demonstrates the motivation of the
performance practice. This is built in a web browser and is
publicly available online through the following URL:https:
//livecodingyoutube.github.io1.

4.1 YouTube iframe API
YouTube provides a Javascript API for the third party de-
velopers to embed and control a YouTube player in a web
page 2. A YouTube player is embedded as an independent
web page, using <iframe> tag. The provided API offers
various functions for programmers to control the embed-
ded player. However, the API functions are primitive and
limited to simple manipulation of the videos.

1the code is available at https://github.com/
livecodingyoutube/livecodingyoutube.github.io
2For more detail, refer https://developers.google.com/
youtube/iframe_api_reference

Figure 1: Live Coding YouTube videos. 3X4 grid,
a live coding editor (translucent) and the search re-
sult (right)

Largely, there are three types of API functions that we
use: playback controls (playVideo, pauseVideo, cueVideoById),
temporal controls (seekTo, setPlaybackRate), and volume
controls (mute, unMute, setVolume). Not only the number of
functions available is limited, but also their capabilities are
restricted. For example, setPlaybackRate method takes a
parameter to change the playback speed, and the parameter
can only be predefined numbers (0.25, 0.5, 1, 1.25, 1.5, and
2); otherwise, it will round down to the nearest supported
value.

4.2 Grid System and Live Coding Editor
The output of the performance system is audiovisual arti-
facts generated by a set of YouTube videos being played by
a live coder, and the input to the system is a performer’s
code written live. The visual outcome and the live coding
environment needs to be projected in a concert space to
make the idea of using YouTube videos explicit to the au-
dience. Therefore, a musician is in need of quickly loading
videos as well as revealing the music-making process (live
coding). To that end, we implemented a grid system that
can automatically load videos, maintain the layout (HTM-
L/CSS) accordingly, and simplify accessing the videos by
indexing them (See Fig. 1). Without the grid system, a
musician would have needed to deal with low-level code,
adding, replacing, and deleting YouTube videos. Instead,
musicians can use a set of helper functions that can add
videos in a line and they can focus on the high-level control
of videos to algorithmically organize them. The grid system
provides a set of helper functions to modify the grid layout
on the fly and to load multiple videos quickly and to create
mash-up. Allowing multiple videos in the grid is analogous
to a digital audio workstation that supports multi-tracks.

As mentioned before, the live coding editor needs to be
shown to the audience, and doing so is particularly chal-
lenging, given that the grid system is the primary visual
outcome, which is directly linked to the music produced by
the mash-up of the YouTube videos. We designed the sys-
tem to have a translucent code editor laid on top of the
grid system. For the readability of the live coder, the line
on which the cursor is placed is highlighted. To execute
code, the live coder needs to select a block of code and
press Shift+Enter.

In order to support efficient video search, the system pro-
vides search function to get the list of video thumbnails
returned by the service for keywords, and the result of the
query is displayed on the right side of the editor (Fig. 1). A
live coder can click a thumbnail of a video and the unique
identifier of the video will be pasted where the cursor is for
further use in coding. This ensures the performer to retrieve

263

 https://livecodingyoutube.github.io
 https://livecodingyoutube.github.io
https://github.com/livecodingyoutube/livecodingyoutube.github.io
https://github.com/livecodingyoutube/livecodingyoutube.github.io
https://developers.google.com/youtube/iframe_api_reference
https://developers.google.com/youtube/iframe_api_reference

any video on the fly by keywords and possibly improvise on
the selection of videos.

4.3 Latency and Buffering
Per each YouTube video, there are two dimensions the mu-
sician can control via YouTube APIs: time and dynamics
(volume). The most significant difference from playing a
sample audio (or video) file and a YouTube video, or stream-
ing media in general, is that it takes time to play a video
from the time that playVideo is called due to the network
transmission. The major source of the latency is the time
between making a request to a cloud server and receiving
streamed data in a local machine. The latency is dependent
on numerous factors: bandwidth, connection speed, and the
number of connections that share resources at the moment.
Fortunately, to improve the user experience of streaming,
all kinds of streaming services use buffering. Video buffer-
ing temporarily stores data in the local memory so that a
momentary insufficiency of data will not stop the playback
as long as the video is buffered enough.

When playVideo is called for a YouTube player, the YouTube
video does not start the video immediately but spends some
time to secure the buffered data enough to safeguard the
video from starving. While this is desirable for casual use
of YouTube to have a smooth playback at the price of wait-
ing for a few seconds in the beginning; this is problematic
when a musician wants to play videos instantly or sched-
ule one or more videos to begin playback at a specific mo-
ment due to the latency and its jitters. This latency from
the buffering step can be avoided by loading and buffering
a video prior to it being actually played. To initiate the
buffering step of a YouTube video, when a video is added
to the grid, the system automatically “plays” the video so
that it immediately moves from the unstarted state to the
buffering state (Fig. 2). Immediately, the video is paused,
so that it will not have any audio output. Now, the video
can be cached locally and can be immediately played with-
out buffering delay (Fig. 2-c).

As the commands such as playVideo, pauseVideo, seekTo,
and setVolume run in the main execution thread, the execu-
tions of such commands can be deferred if the main thread
is temporarily stalled for other tasks, such as changing the
layout or receiving data from a socket. This creates a de-
lay between the buffering state and the paused state and
can have unwanted audiovisual outcomes. To avoid arti-
facts, the system mutes the video and unMutes the video
later (Fig. 2-a,b).

Lastly, even when the video is buffered locally and paused
(at the state of 2-b), there can be a short delay between
the time a user executes playVideo and the time when the
video actually begins. We depicted this delay as “PLAY
DELAY” in the Fig. 2-2. This delay adds to an error if
a musician wants to execute a fine temporal control, like
looping, synchronizing, or phasing.We find that this delay
is dependent on the performance of the main thread, as well
as the video quality of the player (resolution of the video). It
is recommended to sacrifice the video quality (‘tiny’ - 144px
in YouTube setting) for precise temporal controls especially
when there are many videos on one page.

4.4 Helper Functions
The live coding environment provides helper functions that
allow the musician to quickly build the grid and execute
interesting musical gestures. All the helper functions are
listed in the Table 1. The capability of helper functions is
defined by the limited functionalities of the YouTube API.
However, the advantages of using helper function are as
follows: 1) It takes care of the style and appearance of the

Figure 2: Video preparation routine and its state
transition: To have all the videos loaded in the state
that can be immediately played, each video is ini-
tially played automatically and paused in order to
skip the buffering delay when played by a musician.

Table 1: Helper Functions

Category Function Description

Search search
search string and retrieve search
results from YouTube.

Grid
create create a YouTube grid

add
add row(s) or col(s) to the
existing grid.

Playback
play play the video(s)
pause pause the video(s)

cue
replaces the video(s) with new
video (id)

Temporal

seek
seeks to a specified time in the
video(s)

jump jump n seconds in the video(s)
loop loop the video(s) with interval t

loopAt
loop the video(s) at specified time
with interval t

sync
synchronize videos to the specified
time or to the specified video

delay
add specified delay between the
video(s)

speed
change the playback speed of the
video(s)

Dynamics

volume
set volume to a specified level of
the video(s)

turnup
increase volume of the video(s) by
the specified level

mute
mute/unmute the volume of the
video(s)

fadeIn/Out fade in (or out) of the video(s)

grid when adding/replacing videos in a few lines of code. 2)
A live coder can select videos by index and control them in
batch. These helper functions serve as the basic building
blocks of the live coding environment and the rest of the
functionalities are left to a live coder’s performance with
the expressivity of the programming language (javascript).

The first argument of most helper functions is the index of
YouTube videos in the grid. The system provides multiple
ways to quickly select videos and control in a batch The
following example shows how a live coder can select videos
in various ways, given a 2 by 2 grid (indexed from 0 to 3).

c r e a t e (2 , 2 , ‘ ‘ xyz ’ ’) // c r e a t e a 2−by−2 g r id
play (a l l) // play a l l v ideos (0 , 1 , 2 , 3)
seek (1 ,30) // seek to 30 seconds in video 1
fadeOut ([1 , 3]) // fade out v ideo 1 and 3
speed (not (1) , 2) // play in 2X speed f o r 0 ,2 ,3
jump (‘ i %2==1’,5) //jump 5 seconds f o r 1 and 3

5. MUSICAL EXPRESSION WITH YOUTUBE
The basic musical gesture supported by live coding YouTube
video finds parallels in early experimental music that ma-
nipulates magnetic tape and vinyl records. In particular, we

264

borrow musical gestures from minimalist composers includ-
ing Terry Riley, Steve Reich, and Alvin Lucier, all of whom
wrote important pieces in computer music with tape loops.
In our premiere performance, we demonstrated these ideas.
The piece embraces the juxtaposition of the compositional
ideas from the 60s and the emerging media live coded pro-
grammatically. The screen recording of the performance is
available at the following URL: https://livecodingyoutube.
github.io/pat2017.html and the video is archived in [20].We
discuss two important aspects in performing a Live Coding
YouTube piece: 1) selecting audiovisual materials and 2)
developing algorithms that can execute musical gestures.

5.1 Selecting Videos
For a particular performance, a significant portion of sonic
outcome depends on the selection process of videos that will
be used. As the API functions can only control dynamics,
the playback offset, and its speed, whether the selection pro-
cess is improvised or composed, the style of music can vary
drastically based on not only how they are played simulta-
neously, but also the selected videos. The virtuosity of the
performance systems remains in this space of choosing a set
of YouTube videos. Here, we illustrate some ideas that we
have presented in the performance and relate them with the
existing experimental compositions.

• One can select non-musical videos and manipulate them
temporally to create musical gestures, for example phasing
as in Steve Reich’s Come Out.

• A musician improvises by searching keywords on the fly
or playing live-streaming channels, and leave the musical
outcome to chance, like John Cage’s Imaginary Landscape
No. 4.

• A musician can perform the piece, videotape, and live-stream
the performance to YouTube Live, search the live stream
video, and play the video in the grid. The audiovisual arti-
facts captured in the video recorder is then fed back videos
being played on the projection and creates the feedback
loop with the delay created arbitrarily by YouTube, which
is analogous to Alvin Lucier’s I Am Sitting in a Room.

5.2 Live Coding Musical Gestures
As mentioned before, musicians are given a limited set of vo-
cabulary by the API. However, live coding enables algorith-
mic and conversational interaction between the YouTube
grid and the live coder. In this section, we introduce a set
of musical gestures that a live coder accomplishes in the
proposed performance.

5.2.1 Multitrack Mashup
As multiple YouTube videos can be played simultaneously
within a few seconds, an audiovisual mashup becomes a
powerful musical gesture for a musician. This is not neces-
sarily new and there exist web applications wherein a user
can mashup multiple YouTube videos by filling a form with
video IDs and the starting time of each one [3]. However, the
live coding system is different in a way that a musician can
replace videos and control the playback on the fly. Theoret-
ically, the grid system is designed to support any number
of YouTube videos. However, we find that the grid greater
than and equal to 6X6 makes the machine slow down and
makes typing not responsive. Using the fadeIn/Out and
replace the videos (using cue), one can smoothly make a
transition from one video to another.

5.2.2 Loop
Using the loop and loopAt function, one can loop the whole
(or a part of) a YouTube video and specify the interval and

a starting point of the loop. The stacks of audiovisual loops
can be accumulated gradually to create repetitive rhythms
and to build up the piece. The visual outcome of looped
music video creates an interesting visual collage of YouTube
videos. Maintaining a precise metronome for synchronized
looping of multiple videos requires the combined use of Web
Audio API and the javascript timeout systems [39]. As all
helper functions allow a performer to control videos indi-
vidually or in batch, the video loops of different YouTube
videos can be concatenated and played in an alternating
fashion. Setting the interval to relatively short time-frames
(< 1s) produces rapid rhythmic patterns. A loop interval
cannot be small enough to accomplish granular synthesis
but it can support close to the tens of milliseconds when
there is only one video with the lowest resolution (144 pixel).
However, this is still far from the granular synthesis given
the PLAY DELAY in Fig. 2-2. The lower bound increases
as the grid has more videos and/or the video quality gets
better. Therefore, the performer needs to understand the
relationship between the micro-loops, video quality, and po-
tential silence when the loop is too short to be covered in
the main thread.

5.2.3 Delay, Reverb and Phasing
When the grid has multiple instances of one video in sync, a
musician can create a delay effect by adding delays between
instances. The delay function can be used to add this de-
lay in the series of videos. If the delay is small enough (e.g.
1ms), it has the same effect of adding reverb to the sound.
Lastly, combining delay and loop, one can create phasing
effects. Technically, this is not phasing as we do not have
precise control over the playback speed. However, when the
two (or more) videos have a small difference in the loop in-
tervals, it creates the phase effects where one of the samples
slowly plays out of phase.

5.3 Performance Setup
The sound setup of this performance is relatively simple
(stereo out from a laptop). More importantly, reliable on-
line connection is necessary for this performance. The con-
nection may not necessarily be high-speed, thanks to the
buffering mechanism and we were able to successfully re-
hearse the piece 10 Mbps (download). The wireless connec-
tivity can vary potentially with the audience’s smartphones,
which are not present at the rehearsals. Hence it is recom-
mended to use a wired connection to secure online connec-
tivity. Live streaming the performance to create feedback
also requires reliable connection with minimum 2 Mbps up-
loading speed for 360p. As playing multiple YouTube videos
simultaneously involves heavy computation and significant
bandwidth usage, using a secondary projector (with screen
recording for the archival purpose) will increase the compu-
tational load of the computer. As the screen projecting is
essential to the performance idea, using a projector needs
to be tested throughout the composition and the rehearsal
process to run the piece in realistic settings Lastly, playing
YouTube videos may involve random commercial banners
within videos, which can be turned off with the third-party
plug-in.

6. CONCLUSION
In this paper, we discussed the opportunities of using stream-
ing media in computer music performance and introduced
one instance of such opportunities to demonstrate the po-
tential of musical aesthetics that are available to us. In
this paper, we focused on the preliminary expressivity that
streaming media afford by the realization of musical ges-
tures inspired from the ‘60s experimental music. However,

265

https://livecodingyoutube.github.io/pat2017.html
https://livecodingyoutube.github.io/pat2017.html

we do believe that this basic concept can be expanded fur-
ther. In particular, we are interested in liberating videos
from the grid, which will allow more free placements of
YouTube videos and realizing advanced visual effects, such
as cross-fading, cut-out, dissolving, which may enable ‘live-
coded films’. In addition, we are interested in diversifying
the system by implementing a custom interface to control
YouTube videos and integrate them into existing perfor-
mance practice such as DJing, audience participation, and
collaborative improvisation with instrumental musicians. Fi-
nally, content identification on the video could allow ad-
ditional levels of control and manipulation, such as auto-
mated beat synchronization, onset synchronization, or color
matching.

7. REFERENCES
[1] Fair use of copyrighted materials. https:

//www.youtube.com/yt/copyright/fair-use.html.
Accessed: 2017-01.

[2] News and notes on 2015 riaa shipment and revenue
statistics. accessed: 2017-01.
http://www.riaa.com/wp-content/uploads/2016/

03/RIAA-2015-Year-End-shipments-memo.pdf.

[3] Youtube multiplier. accessed: 2017-01.
http://www.youtubemultiplier.com/.

[4] Youtube,terms of service. accessed: 2017-01.
https://www.youtube.com/static?template=terms,
2010-06.

[5] M. Baalman. Gewording, 2014. Music Performance,
the International Conference on New Interfaces for
Musical Expression.

[6] E. Benjamin and J. Altosaar. Musicmapper:
Interactive 2D representations of music samples for
in-browser remixing and exploration. In Proceedings
of the International Conference on New Interfaces for
Musical Expression, Baton Rouge, Louisiana, 2015.

[7] J. Cage. Williams mix. 1953.

[8] C. Carlson and G. Wang. Borderlands -an audiovisual
interface for granular synthesis. In Proceedings of the
International Conference on New Interfaces for
Musical Expression, Ann Arbor, Michigan, 2012.

[9] E. Cocker. Live Coding / Weaving - Penelopean Mêtis
and the Weaver-Coder’s Kairos. In Proceedings of the
International Conference on Live Coding, 2015.

[10] N. Collins, A. McLean, J. Rohrhuber, and A. Ward.
Live coding in laptop performance. Organised Sound,
8(03):321–330, 2003.

[11] D. Della Casa and G. John. Livecodelab 2.0 and its
language livecodelang. In Proceedings of the ACM
SIGPLAN international workshop on Functional art,
music, modeling & design, 2014.

[12] M. Faulkner. VJ: Audio-Visual Art and VJ Culture:
Includes DVD. Laurence King Publishing, 2006.

[13] M. Gurevich, P. Stapleton, and A. Marquez-Borbon.
Style and constraint in electronic musical instruments.
In Proceedings of New Interfaces for Musical
Expression, pages 106–111, 2010.

[14] K. F. Hansen. Turntable music. Musikklidenskapelig

Årbok, 2000:145–160, 2000.

[15] A. Hindle. Cloudorch: A portable soundcard in the
cloud. In Proceedings of New Interfaces for Musical
Expression, London, United Kingdom, 2014.

[16] T. Holmes. Electronic and experimental music:
technology, music, and culture. Routledge, 2012.

[17] J. Kato, T. Nakano, and M. Goto. TextAlive Online:
Live Programming of Kinetic Typography Videos

with Online Music. In Proceedings of the International
Conference on Live Coding, pages 199–205, Leeds,
UK, July 2015. ICSRiM, University of Leeds.

[18] S. König. sCrAmBlEd? HaCkZ!, 2006.

[19] N. Kruge and G. Wang. Madpad : A crowdsourcing
system for audiovisual sampling. In Proceedings of the
International Conference on New Interfaces for
Musical Expression, Oslo, Norway, 2011.

[20] S. W. Lee, J. Bang, and G. Essl. Live Coding
YouTube - PAT showcase 2017 (Screen Recording).
Zenodo, Apr 2017.

[21] S. W. Lee, A. D. de Carvalho Junior, and G. Essl.
Crowd in c[loud]: Audience participation music with
online dating metaphor using cloud service. 2016.

[22] S. W. Lee and G. Essl. Live coding the mobile music
instrument. In Proceedings of New Interfaces for
Musical Expression, Daejeon, South Korea, 2013.

[23] S. W. Lee and J. Freeman. Real-time music notation
in mixed laptop–acoustic ensembles. Computer Music
Journal, 37(4):24–36, 2013.

[24] J. Oh and G. Wang. Audience-participation
techniques based on social mobile computing. In
International Computer Music Conference, At
Huddersfield, UK, 2011.

[25] S. O’Modhrain and G. Essl. Pebblebox and
crumblebag: Tactile interfaces for granular synthesis.
In Proceedings of the International Conference on
New Interfaces for Musical Expression, pages 74–79,
Hamamatsu, Japan, 2004.

[26] T. T. Opie. Creation of a real-time granular synthesis
instrument for live performance. PhD thesis,
Queensland University of Technology, 2003.

[27] C. Roberts and J. Kuchera-Morin. Gibber: Live
coding audio in the browser. In Proceedings of the
International Computer Music Conference (ICMC),
Ljubljana, Slovenia, 2012.

[28] M. J. Rubin. The effectiveness of live-coding to teach
introductory programming. In Proceeding of the ACM
Symposium on Computer science education, 2013.

[29] P. Schaeffer, F. B. Mâche, M. Philippot, F. Bayle,
L. Ferrari, I. Malec, and B. Parmegiani. La musique
concrète. Presses universitaires de France, 1967.

[30] R. M. Schafer. The soundscape: Our sonic
environment and the tuning of the world. Inner
Traditions/Bear & Co, 1993.

[31] K. Sicchio. Hacking choreography: Dance and live
coding. Computer Music Journal, 38(1):31–39, 2014.

[32] K. Stockhausen. Studie I. 1953.

[33] K. Stockhausen. Studie II. 1954.

[34] B. Swift, A. Sorensen, H. Gardner, P. Davis, and
V. K. Decyk. Live programming in scientific
simulation. Supercomputing frontiers and innovations,
2(4):4–15, 2016.

[35] B. Taylor. The Last Cloud. Composition, 2016.

[36] Y. Tone. Solo for wounded CD. Tzadik, 1997.

[37] B. Truax. Real-time granular synthesis with a digital
signal processor. Computer Music Journal,
12(2):14–26, 1988.

[38] Wikipedia. Censorship of youtube. Accessed 2017-04.

[39] C. Wilson. A tale of two clocks - scheduling web audio
with precision. https://www.html5rocks.com/en/
tutorials/audio/scheduling/, 2013-01. Accessed:
2017-01.

[40] I. Xenakis. Formalized music: thought and
mathematics in composition. Number 6. Pendragon
Press, 1992.

266

https://www.youtube.com/yt/copyright/fair-use.html
https://www.youtube.com/yt/copyright/fair-use.html
http://www.riaa.com/wp-content/uploads/2016/03/RIAA-2015-Year-End-shipments-memo.pdf
http://www.riaa.com/wp-content/uploads/2016/03/RIAA-2015-Year-End-shipments-memo.pdf
http://www.youtubemultiplier.com/
https://www.youtube.com/static?template=terms
https://www.html5rocks.com/en/tutorials/audio/scheduling/
https://www.html5rocks.com/en/tutorials/audio/scheduling/

