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ABSTRACT
Machine learning tools for designing motion-sound relation-
ships often rely on a two-phase iterative process, where
users must alternate between designing gestures and per-
forming mappings. We present a first prototype of a user
adaptable tool that aims at merging these design and per-
formance steps into one fully interactive experience. It
is based on an online learning implementation of a Gaus-
sian Mixture Model supporting real-time adaptation to user
movement and generation of sound parameters. To allow
both fine-tune modification tasks and open-ended improvi-
sational practices, we designed two interaction modes that
either let users shape, or guide interactive motion-sound
mappings. Considering an improvisational use case, we pro-
pose two example musical applications to illustrate how our
tool might support various forms of corporeal engagement
with sound, and inspire further perspectives for machine
learning-mediated embodied musical expression.

Author Keywords
Motion, Sound, Embodied Interaction, Machine Learning,
Expressiveness, Max/MSP.

CCS Concepts
•Human-centered computing→Gestural input; Sound-
based input / output; •Applied computing→ Sound
and music computing;

1. INTRODUCTION
Designing digital musical instruments that are adaptable
to user-specific movement characteristics has become in-
creasingly accessible through the use of interactive machine
learning. With these technologies, users can build custom
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motion-sound mappings [9] by physically demonstrating ex-
amples of gestures for given sounds — thus relying on cor-
poreal knowledge instead of programming skills.

Most interactive approaches to machine learning for de-
signing motion-sound mappings have relied on a two-step,
iterative design process (see figure 1) [8]. In the first step,
called training or design step, users perform gestures along
with pre-defined sounds. In the second step, called per-
formance step, users experiment with the newly-created
mapping. For example, they can perform similar gestures
to the ones they recorded during the design step in order
to replay, or re-enact, previously-selected sounds; or, they
can perform new gestures in order to explore, and discover,
new sonic forms. Users must then alternate several times
between these two steps in order to succeed in building a
subjectively-rewarding mapping.

Several user studies have proven that this iterative design
process can support corporeal engagement with sound [1, 7].
However, recent works have raised a number of points yet
to be improved [17]. For example, some users may have
difficulties in designing gestures and evermore to fine-tune
mapping. Importantly, Scurto et al. found that users might
appreciate machine learning-based mappings that surprise
and challenge them through continuous physical interaction
[17].

In this paper, we describe a novel user adaptable tool
for designing motion-based interactive music systems. It is
based on an online machine learning implementation that
allows mappings to adapt to users in real-time while gen-
erating sound, thus merging design and performance steps
into one fully interactive experience. We first define our sys-
tem’s workflow, which aims at tightening action-perception
loops through continuous adaptation. Second, we describe
a first model and implementation of our tool for supporting
embodied exploration of motion-sound relationships. Fi-
nally, we propose an improvisation use case involving vari-
ous gestural controllers and sonic environments, and discuss
how our approach could support corporeal engagement with
sound in real-world musical applications.
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Figure 1: A Mapping-by-Demonstration workflow.

2. BACKGROUND
Mapping, defined as the link between a gestural controller
and a sound source, has been central in research on in-
terfaces for musical expression. While most initial research
focused on explicit motion-sound relationship programming
[9], using machine learning algorithms for mapping design
have proven very promising in a musical context where no-
tions of expressivity and generativity are of prime interest
[3]. Current interactive approaches to supervised machine
learning have turned these algorithms as user-facing mu-
sical design tools [5], allowing users to physically demon-
strate examples of motion-sound relationships to build a
desired mapping function instead of writing code, and with-
out needing to have knowledge on algorithms.

In this context, several supervised algorithms have been
studied, depending on the musical task users would like
to achieve. For example, Bevilacqua et al. [1] focused on
gesture following tasks and implemented a Hidden Markov
Model to perform continuous tracking on users’ gestural
data. Fiebrink et al. investigated static mapping building
using neural networks for regression tasks and several stan-
dard algorithms for classification tasks, such as k-nearest
neighbors [6]. Françoise et al. proposed four static and/or
dynamic models able to perform both classification and re-
gression tasks [8]. Finally, Caramiaux et al. developed a
system that recognizes gestures and adapts to performance
variations [2].

Beyond such objective-oriented tasks, research by Fiebrink
et al. have shown that machine learning can support cre-
ative discoveries in musical motion-sound mapping design
[6]. For example, criteria such as unexpectedness and ac-
cessibility have been praised by computer musicians when
composing an instrument [7]. In this spirit, Scurto and
Fiebrink proposed new methods for rapid mapping proto-
typing which shift users’ focus from designing motion-sound
relationships to the embodied exploration of relationships
that have been generated partly by the computer [17].

However, to our knowledge, most of these approaches re-
mained focused on a two-step design process (see figure 1),
where users alternate between demonstrating gestures along
pre-recorded sounds (movement acted from the experience
of listening to a sound) and interacting with newly-created
mappings (movement acted as having an effect on sound).
This iterative process might interrupt musical intentionality
encoding, which, as theorized by Leman, necessitates an ac-
tive, action-oriented, corporeal engagement of humans with
sound [12]. Interestingly, other computational approaches
aimed at providing users with such continuous interactive
flows, for example using dynamic mapping strategies [14] or
physics-based mappings [15].

Inspired by such approaches and other interactive music
systems [10], we propose to reconsider mapping creation to
bridge the gap between design and performance steps.
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Figure 2: The interactive workflow of our system.

3. DESIGN THROUGH PERFORMANCE
In this section, we define the learning workflow of our system
as well as its interaction modes.

3.1 Definition
Our wish is to enable users to design mappings in an on-
line fashion, where design would be made possible through
performance. We propose the following workflow, which is
depicted in figure 2.

3.1.1 General workflow
Our system allows users to design machine learning-based
motion-sound mappings while performing with them. More
precisely, it enables online multidimensional adaptation to
users input gestural space by continuously recording input
data as the training set of a machine learning algorithm.
Both design and performance steps are thus supported un-
der the same motion flow. The modelling of the “internal
structure” of users’ gestural space can then drive sound syn-
thesis in several manners (as described in section 5), all of
them being characterized by direct, corporeal interaction
with sound and personalized exploration of motion in re-
lation to sound. We designed our system with a particu-
lar focus on reducing GUI actions taken in-between perfor-
mances. One level of interaction with machine learning still
remains available to users: similarly to previous mapping-
by-demonstration tools, the “setting” step allows for config-
uring a minimal set of learning parameters as well as input
parameters (as described in section 4).

3.1.2 Online learning
Such an interaction paradigm differs from previous interac-
tive supervised learning approaches: instead of demonstrat-
ing gestural examples that have been designed and labeled
in a separate step, users physically interact with an adaptive
model that constantly generates sound, depending on both
previous and current user movement. Importantly, our sys-
tem thus switches from current mapping-by-demonstration
supervised paradigms (where user-provided pairs of gestures
and sounds constitute a training set) to an unsupervised
learning paradigm (where the training set consists in un-
labeled gestural data). However, as we will see, users still
have the possibility to consciously influence the learning by
performing and correcting the system. We will discuss such
learning workflows in section 6.

3.2 Interaction modes
From this definition, we designed two interaction modes
based on different memory processes. The main concept is
to allow users to design parts of their input space through
the metaphor of temporal persistence, where “occupation
time” (as an “accumulation process”) is central to the cre-
ation of the training set. There are several other ways to
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Figure 3: The two interaction modes. Probability clusters are sampled at 3 discrete times for 1-dimensional
gestural data. On left, clusters continuously evolve as users’ gestural data is recorded to the training set
with a sliding window. On right, users continuously modify clusters’ parameters as they successively add
and delete gestural data to the training set.

interact online with a machine learning algorithm through
its training set: we will discuss it in section 6.

3.2.1 Guiding
The guiding mode (figure 3, left) consists in having users
adding gestural data with a sliding temporal window to the
training set during the interaction. It can be seen as an in-
teractive music system with a constant-size memory, where
users could directly and physically explore sound spaces in
order to foster creative discoveries. It allows mappings to
evolve continuously, focusing in or out of some spaces in
users’ gestural input space in real-time following abstract
embodied specifications of users. A typical situation would
involve the creation of clusters in a relatively small area of
the input space by having users stay in this part of the input
space, then its real-time evolution (or guiding) by moving
in larger areas of the input space. This personalized in-
teraction relies on an finite memory process where old data
would be continuously replaced from the training set by new
data.

3.2.2 Shaping
The shaping mode (figure 3, right) consists in having users
interactively adding and/or deleting gestural data to the
training set during the interaction. It can be seen as a con-
tinuous extension of previous interactive machine learning
systems, where users could delete and re-add a previously-
recorded example in a design step by clicking on a but-
ton in a design step, then see the effect in a performance
step. Here, users can add new examples and delete old ones
by (re-)demonstrating them, while hearing the sonic conse-
quences in real-time. Like using a pencil with eraser, this
would allow rapid, custom, and fine-tuned modification of
mappings. A typical situation would involve the creation of
a new cluster for a new gesture, then its modification (or
shaping) by adding or deleting variations of this gesture in
the recorded data. This personalized interaction relies on
an (almost-)infinite memory process where the training set
would grow as users successively supply the system with
data.

4. SYSTEM IMPLEMENTATION
We present the first learning model implemented in our sys-
tem, as well as our system’s current architecture.

4.1 Learning model
The current version of our tool implements an online, unsu-
pervised version of Gaussian Mixture Model (GMM). GMMs

are very general and versatile probabilistic models for de-
signing motion-sound relationships, providing with variables
for both classification and regression at a relatively low com-
putational cost [8].

A GMM is a learning model that can perform soft clus-
tering, which is identifying groups of similarity in gestural
data and computing for a new data point x each probability
that it belongs to each of these clusters. Here, clusters are
modelled as Gaussian distributions N , and the probability
p of belonging to the overall model θ is given by:

p(x|θ) =

K∑
k=1

πkN (x|µk,Σk) (1)
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Figure 4: A Gaussian Mixture Model with K = 3
cluster components for 1-dimensional motion data.

There are four categories of parameters in GMM (see fig-
ure 4 and equation 1). The first one is the number of clusters
K, which is the number of multivariate Gaussian distribu-
tions used in the mixture model. These clusters can be used
for classification purposes. Then, each Gaussian distribu-
tion has its own mean vector µk and covariance matrix Σk,
as well as its own weight πk in the mixture. These param-
eters can be used for regression purposes. In a standard
interactive supervised learning setup, such parameters are
set and learnt offline from custom gesture-sound examples
demonstrated by users. In our paradigm, the learning is
online: Gaussian parameters would evolve in real-time as
users supply the model with only gestural data, which sup-
port continuous action-perception workflow as specified in
the previous section.

In such an online, unsupervised paradigm, we propose
to add entropy H = −

∑
p(x) ln p(x) as a supplementary

parameter for controlling sound synthesis. Our idea is to
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Figure 5: Current user interface. On left: Main window allowing recording gestural data following different
interaction modes. On right: Output model parameters.

report the evolution of the model as users modify the train-
ing set, and use it as a modality for sound generation. En-
tropy can be seen as an abstract scalar quantity rendering
the amount of order in data. For example, non-overlapping
clusters with close-to-zero covariance values would give a
low entropy value, whereas an almost-uniform distribution
would give a much higher value.

4.2 Software
We implemented a prototypical version of our system as
a Max/MSP patch1 that makes an extensive use of XMM
library for learning GMMs [8] and MuBu objects for storing
and editing data [16]. The tool’s GUI provides users with
different capabilities (see figure 5):

• Connect any kind of gestural input device, provided
its data is sent as an OSC message.

• Experiment with different kinds of sound synthesis
module, provided they receive OSC messages.

• Modify the training set physically either by adding,
deleting, or window streaming gestural data.

• Define the length of the recording window.

• Define the number of Gaussian components in the
GMM.

Currently, our tool supports online learning by training
and running a GMM at a sufficiently high rate (every 100
ms) so that it remains perceptually convincing in an action-
perception workflow [10]. Gestural data is either stored in-
crementally or replaced dynamically by making use of over-
dub and append messages of the MuBu container. The
“delete” action is made possible by identifying and deleting
the first nearest neighbour of user live input in the training
database. Ultimately, we will implement an online learning
algorithm in a more global framework whose outline is de-
fined in section 6, and work on interactive visualizations of
Gaussians distributions to enable users to interact with our
tool in a multimodal, audiovisual environment (as discussed
in section 6).

5. EXAMPLE MUSICAL USE CASES
We propose to illustrate the possibilities of our tool in two
use cases focusing on exploratory improvisational processes,
using various gestural controllers and sonic environments.
We implemented them as Max/MSP patches1; mappings
are described in figure 8.

5.1 Meta-sound synthesis engine
This first application aims at facilitating exploration of a
subtractive synthesis engine through human motion. For
the sake of clarity, we focused on two-dimensional static po-
sition features using a simple mouse position tracking patch.

1http://github.com/hugoscurto/OnlineGMM

As shown in figure 6, we chose to pair each Gaussian to a
resonant filter.

Users are first allowed to set the number of Gaussian com-
ponents of the GMM. Here, it sets the number of resonant
filters at stake in their synthesis engine: it is thus closely
related to the complexity of the mapping. Then, they can
experiment with the two interaction modes provided by our
system. On the one hand, using the guiding mode allows
them to control and explore the resonant filters through var-
ious movement strategies (for example, first focusing on a
small spatial area where all resonant filters would be con-
centrated, then expanding the control area to larger spa-
tial bounds, changing both control modalities and qualities
of resonant filters as previously-computed Gaussians would
evolve). On the other hand, using the shaping mode al-
lows them to edit each resonant filter parameters step by
step in an abstract manner (for example, first creating one
resonant filter at a given position, then exploring different
resonance parameters by either adding or deleting gestural
data to modify the covariance of the paired Gaussian, then
iterating this process with other resonant filters).

This use case illustrates how our system supports open-
ended exploration of a sound synthesis engine, where em-
bodiment could drive the composition of complex sound pa-
rameter combinations in real-time.

5.2 Expressive shaker
This second application aims at sonifying movement expres-
siveness through concatenative synthesis. We used an em-
bedded module2 to sense hand acceleration and extracted
from it a 36-dimensional wavelet spectrum to render move-
ment quality. We chose to map entropy with random pitch
variation of each played grain, and variance values to ran-
dom duration variation of each played grain. As shown in
figure 7, we paired each Gaussian mean to a “reader head”
that allows for navigating through different sound grains in
a given audio descriptor space.

Again, users first set the number of Gaussian components
of the GMM. Here, it sets the number of reader heads of
the concatenative synthesis engine, as well as the number
of movement qualities modelled by the GMM. Then, they
can experiment with the two interaction modes provided
by our system. On the one hand, the guiding mode would
allow them to focus in turns on different movement quali-
ties: when a given movement quality is stable, all Gaussians
gather together on a precise localization in the input space,
and play the same sample at a constant pitch and duration.
On the other hand, the shaping mode should allow them to
successively specify given movement qualities.

This use case illustrates how our system supports open-
ended exploration of motion qualities, where sound could
drive the embodiment of different kind of expressive motions
in real-time.

2http://ismm.ircam.fr/riot/
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sound synthesis engine. Here, it contains 4 res-
onators, each of them paired with one cluster.

6. DISCUSSION
In the next section we discuss several perspectives related
to future evaluation and implementation of our system.

6.1 Exploration through interaction
When first interacting with a musical interface, users can
take many paths and adopt various styles to explore the in-
strument’s possibilities and constraints, thus learning how
(or renouncing) to use it. By enabling design through per-
formance, our system aims at supporting exploration of
novel paths in the creation and use of musical interfaces.
We believe these paths may differ from those suggested by
interactive supervised learning tools, where users have to al-
ternate between design and performance steps to come up
with a rewarding mapping.

Moreover, we designed the “guiding” and “shaping” inter-
action modes with a particular attention to support both
fine-tune modification tasks and open-ended improvisational
practices. However, as all user actions are implemented un-
der the same experiential workflow (action-perception loops
emerging from physical interaction with sound), other alter-
native uses may be achieved. For example, one could add
data to the training set indefinitely to create a mapping that
would progressively “freeze” once having recorded enough
data. Also and perhaps surprisingly, the “Delete” action
actually produces sound: one could imagine a performance
where “Delete” gestures would act as control mechanisms
for sonic events. Several new interaction styles could thus
be explored with our tool, each of them placing corporeal
engagement with sound as the main point of focus.

6.2 Evaluation and human learning
Our tool workflow heavily relies on listening abilities in rela-
tion to motion, and on a metaphor of temporal persistence
and “occupation time”. In this sense, it is arguable that
our tool may present novice users with a low threshold for
taking part in musical activities. Meanwhile, its interaction
modes potentially present a certain level of sophistication
that might also support expert performing. To assess these
points, we will lead user evaluation with both user groups
in order to study how novice users could gain expertise in
music making through our workflow, and to better under-
stand what kind of creative paths composers and perfomers
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Figure 7: Schematic representation of the expres-
sive shaker. Here, it contains 3 reader heads, each
of them paired with one cluster.

would discover using our tool.
Alternatively, we believe such direct interaction with sound

could be applied to other musical contexts in order to arouse
motivation and novel forms of expression. For example,
using our system in a shared and distributed setup where
several users would edit a unique training set could be of
interest to support corporeal synchronization through mu-
sical activities. In future work we may use such data-driven
scenarios with various kinds of users, from novice to expert
performers as well as people with disabilities working with
music therapists. We hope this would help us gain an under-
standing of how a machine learning entity could steer social
and collective interaction in embodied musical activities.

6.3 Further implementation
Our current prototype provides users with one learning model
(GMM) and a slider-based GUI. In future work we will im-
plement an online expectation-maximization algorithm for
continuous, optimized learning and inferring, and investi-
gate interactive visualizations of Gaussian distributions to
let users interact in an audiovisual augmented reality setup.
Also and importantly, we would like to let users experiment
with other learning algorithms, allowing for even more di-
verse musical uses. For example, a current limitation of
the Gaussian Mixture Model is that it considers each new
input as independent from previously-observed data points.
Such a property might not be suitable to human movement,
as dynamics are deemed of prime importance when deal-
ing with qualities of corporeal expressiveness [13]. There-
fore, modelling dynamic patterns in gestural data could be
a promising approach for generating sequential musical out-
put that would be stylistically coherent with users’ bodily
expression. We plan to study adaptive dynamical systems
to both model user-specific movement qualities and to gen-
erate continuous navigation trajectories [11]. Another ap-
proach would be to study a reactive factor oracle [4] to let
users either shape a training set of movement patterns, or
guide a discrete navigation through this training set.

Finally, our current implementation does not provide users
with a completely continuous way to interact with machine
learning. If the number of GUI actions has been reduced
from previous interactive supervised learning systems, users
still have to specify whether they would like to record, delete,

414



Expressive shakerMeta-sound synthesis engine
M

O
T

I
O

N

Tr
ai

ni
ng

 s
et M

od
el

Re
co

rd
 m

ot
io

nM
ov

e
Model probability  p

Gaussian probability  N

Class  K

Entropy  H

Weights  π

Means  µ

Covariances  Σ

Resonance gains

Resonator

Resonance frequencies

Resonance decays

Noise amplitude

S
O

U
N

D

Grains

Grain gains

Pitch variation 

Duration variation

Figure 8: Example musical mappings implemented for our improvisational use case.

or window stream data during their performance. Other
memory processes may be investigated to allow automatic
recognition of physical actions taken by users [11], thus me-
diating embodied musical interactions more fluidly.

7. CONCLUSION
We presented a user adaptable tool for designing motion-
sound mappings that merges design and performance steps
into one fully interactive experience. It implements an on-
line learning workflow that allows mappings to adapt in
real-time to users’ movement while generating new sonic
parameters. We designed two main interaction modes al-
lowing different degrees of modification and exploration in
designing mappings, as well as two example musical ap-
plications in an improvisational use case to show how our
tool might support corporeal engagement with sound in an
innovative manner. In future work we will implement a
computational framework supporting continuous corporeal
interaction with both static and dynamic learning models
along with interactive visualizations of the system’s inter-
nal state. This should allow us to conduct novel artistic
and educational real-world applications where human mo-
tion would be at the center of musical expression.
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