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Abstract

In this paper, we review the major approaches to multimodal human–computer interaction, giving an overview of the field from a
computer vision perspective. In particular, we focus on body, gesture, gaze, and affective interaction (facial expression recognition
and emotion in audio). We discuss user and task modeling, and multimodal fusion, highlighting challenges, open issues, and emerging
applications for multimodal human–computer interaction (MMHCI) research.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Multimodal human–computer interaction (MMHCI)
lies at the crossroads of several research areas including
computer vision, psychology, artificial intelligence, and
many others. We study MMHCI to determine how we
can make computer technology more usable by people,
which invariably requires the understanding of at least three
things: the user who interacts with it, the system (the com-
puter technology and its usability), and the interaction
between the user and the system. By considering these
aspects, it is obvious that MMHCI is a multi-disciplinary
subject since the designer of an interactive system should
have expertise in a range of topics: psychology and cogni-
tive science to understand the user’s perceptual, cognitive,
and problem solving skills, sociology to understand the
wider context of interaction, ergonomics to understand
the user’s physical capabilities, graphic design to produce
effective interface presentation, computer science and engi-
neering to be able to build the necessary technology, etc.
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The multidisciplinary nature of MMHCI motivates our
approach to this survey. Instead of focusing only on
Computer Vision techniques for MMHCI, we give a gen-
eral overview of the field, discussing the major approaches
and issues in MMHCI from a computer vision perspective.
Our contribution, therefore, is giving researchers in Com-
puter Vision or any other area who are interested in
MMHCI a broad view of the state of the art and outlining
opportunities and challenges in this exciting area.
1.1. Motivation

In human–human communication, interpreting the mix
of audio–visual signals is essential in communicating.
Researchers in many fields recognize this, and thanks to
advances in the development of unimodal techniques (in
speech and audio processing, computer vision, etc.), and
in hardware technologies (inexpensive cameras and other
types of sensors), there has been a significant growth in
MMHCI research. Unlike in traditional HCI applications
(a single user facing a computer and interacting with it via
a mouse or a keyboard), in the new applications (e.g., intel-
ligent homes [105], remote collaboration, arts, etc.), interac-
tions are not always explicit commands, and often involve
multiple users. This is due in part to the remarkable pro-
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gress in the last few years in computer processor speed,
memory, and storage capabilities, matched by the availabil-
ity of many new input and output devices that are making
ubiquitous computing [185,67,66] a reality. Devices include
phones, embedded systems, PDAs, laptops, wall size dis-
plays, and many others. The wide range of computing
devices available, with differing computational power and
input/output capabilities, means that the future of comput-
ing is likely to include novel ways of interaction. Some of
the methods include gestures [136], speech [143], haptics
[9], eye blinks [58], and many others. Glove mounted
devices [19] and graspable user interfaces [48], for example,
seem now ripe for exploration. Pointing devices with haptic
feedback, eye tracking, and gaze detection [69] are also cur-
rently emerging. As in human–human communication,
however, effective communication is likely to take place
when different input devices are used in combination.

Multimodal interfaces have been shown to have many
advantages [34]: they prevent errors, bring robustness to
the interface, help the user to correct errors or recover from
them more easily, bring more bandwidth to the communica-
tion, and add alternative communication methods to
different situations and environments. Disambiguation of
error-prone modalities using multimodal interfaces is one
important motivation for the use of multiple modalities in
many systems. As shown by Oviatt [123], error-prone
technologies can compensate each other, rather than bring
redundancy to the interface and reduce the need for error
correction. It should be noted, however, that multiple modal-
ities alone do not bring benefits to the interface: the use of
multiple modalities may be ineffective or even disadvanta-
geous. In this context, Oviatt [124] has presented the common
misconceptions (myths) of multimodal interfaces, most of
them related to the use of speech as an input modality.

In this paper, we review the research areas we consider
essential for MMHCI, giving an overview of the state of
the art, and based on the results of our survey, identify
major trends and open issues in MMHCI. We group vision
techniques according to the human body (Fig. 1). Large-
scale body movement, gesture (e.g., hands), and gaze
analysis are used for tasks such as emotion recognition in
affective interaction, and for a variety of applications. We
discuss affective computer interaction, issues in multi-
modal fusion, modeling, and data collection, and a variety
of emerging MMHCI applications. Since MMHCI is a very
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Fig. 1. Overview of multimodal interaction using a human-centered
approach.
dynamic and broad research area we do not intend to pres-
ent a complete survey. The main contribution of this paper,
therefore, is to provide an overview of the main computer
vision techniques used in the context of MMHCI while giv-
ing an overview of the main research areas, techniques,
applications, and open issues in MMHCI.

1.2. Related surveys

Extensive surveys have been previously published in sev-
eral areas such as face detection [190,63], face recognition
[196], facial expression analysis [47,131], vocal emotion
[119,109], gesture recognition [96,174,136], human motion
analysis [65,182,182,56,3,46,107], audio–visual automatic
speech recognition [143], and eye tracking [41,36]. Reviews
of vision-based HCI are presented in [142] and [73] with a
focus on head tracking, face and facial expression recogni-
tion, eye tracking, and gesture recognition. Adaptive and
intelligent HCI is discussed in [40] with a review of
computer vision for human motion analysis, and a discus-
sion of techniques for lower arm movement detection, face
processing, and gaze analysis. Multimodal interfaces
are discussed in [125–128,144,158,135,171]. Real-time
vision for HCI (gestures, object tracking, hand posture,
gaze, face pose) is discussed in [84] and [77]. Here, we
discuss work not included in previous surveys, expand
the discussion to areas not covered previously (e.g., in
[84,40,142,126,115]), and discuss new applications in
emerging areas while highlighting the main research issues.

Related conferences and workshops include the follow-
ing: ACM CHI, IFIP Interact, IEEE CVPR, IEEE ICCV,
ACM Multimedia, International Workshop on Human-
Centered Multimedia (HCM) in conjunction with ACM
Multimedia, International Workshops on Human–Com-
puter Interaction in conjunction with ICCV and ECCV,
Intelligent User Interfaces (IUI) conference, and Interna-
tional Conference on Multimodal Interfaces (ICMI),
among others.

1.3. Outline

The rest of the paper is organized as follows. In Section
2, we give an overview of MMHCI. Section 3 covers core
computer vision techniques. Section 4 surveys affective
HCI, and Section 5 deals with modeling, fusion, and data
collection, while Section 6 discusses relevant application
areas for MMHCI. We conclude with Section 7.

2. Overview of multimodal interaction

The term multimodal has been used in many contexts and
across several disciplines (see [10–12] for a taxonomy of
modalities). For our interests, a multimodal HCI system is

simply one that responds to inputs in more than one modality

or communication channel (e.g., speech, gesture, writing,
and others). We use a human-centered approach and by
modality we mean mode of communication according to
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human senses and computer input devices activated by
humans or measuring human qualities2 (e.g., blood pressure,
see Fig. 1). The human senses are sight, touch, hearing, smell,
and taste. The input modalities of many computer input
devices can be considered to correspond to human senses:
cameras (sight), haptic sensors (touch) [9], microphones
(hearing), olfactory (smell), and even taste [92]. Many other
computer input devices activated by humans, however, can
be considered to correspond to a combination of human
senses, or to none at all: keyboard, mouse, writing tablet,
motion input (e.g., the device itself is moved for interaction),
galvanic skin response, and other biometric sensors.

In our definition, the word input is of great importance,
as in practice most interactions with computers take place
using multiple modalities. For example, as we type, we
touch keys on a keyboard to input data into the computer,
but some of us also use sight to read what we type or to
locate the proper keys to be pressed. Therefore, it is impor-
tant to keep in mind the differences between what the
human is doing and what the system is actually receiving
as input during interaction. For instance, a computer with
a microphone could potentially understand multiple lan-
guages or only different types of sounds (e.g., using a hum-
ming interface for music retrieval). Although the term
multimodal has often been used to refer to such cases
(e.g., multilingual input in [13] is considered multimodal),
in this survey only a system that uses a combination of dif-
ferent modalities (i.e., communication channels) such as
those depicted in Fig. 1 is multimodal. For example, a sys-
tem that responds only to facial expressions and hand ges-
tures using only cameras as input is not multimodal, even if
signals from various cameras are used. Using the same
argument, a system with multiple keys is not multimodal,
but a system with mouse and keyboard input is. Although
others have studied multimodal interaction using multiple
devices such as mouse and keyboard, keyboard and pen,
and others, for the purposes of our survey, we are only
interested in the combination of visual (camera) input with
other types of input for human–computer interaction.

In the context of HCI, multimodal techniques can be
used to construct many different types of interfaces
(Fig. 1). Of particular interest for our goals are perceptual,
attentive, and enactive interfaces. Perceptual interfaces
[176], as defined in [177], are highly interactive, multimodal
interfaces that enable rich, natural, and efficient interaction
with computers. Perceptual interfaces seek to leverage sens-
ing (input) and rendering (output) technologies in order to
provide interactions not feasible with standard interfaces
and common I/O devices such as the keyboard, the mouse,
and the monitor [177], making computer vision a central
2 Robots or other devices could communicate in a multimodal way with
each other. For instance, a conveyor belt in a factory could carry boxes
and a system could identify the boxes using RFID tags on the boxes. The
orientation of the boxes could then be estimated using cameras. Our
interest in this survey, however, is only on human-centered multimodal
systems.
component in many cases. Attentive interfaces [180] are
context-aware interfaces that rely on a person’s attention
as the primary input [160]—that is, attentive interfaces
[120] use gathered information to estimate the best time
and approach for communicating with the user. Since
attention is epitomized by eye contact [160] and gestures
(although other measures such as mouse movement can
be indicative), computer vision plays a major role in atten-
tive interfaces. Enactive interfaces are those that help users
communicate a form of knowledge based on the active use
of the hands or body for apprehension tasks. Enactive
knowledge is not simply multisensory mediated knowledge,
but knowledge stored in the form of motor responses and
acquired by the act of ‘‘doing’’. Typical examples are the
competence required by tasks such as typing, driving a
car, dancing, playing a musical instrument, and modeling
objects from clay. All of these tasks would be difficult to
describe in an iconic or symbolic form.

In the next section, we survey Computer Vision tech-
niques for MMHCI and in the following sections we dis-
cuss fusion, interaction, and applications in more detail.
3. Human-centered vision

We classify vision techniques for MMHCI using a
human-centered approach and we divide them according
to the human body: (1) large-scale body movements, (2)
hand gestures, and (3) gaze. We make a distinction between
command (actions can be used to explicitly execute com-
mands: select menus, etc.) and non-command interfaces
(actions or events used to indirectly tune the system to
the user’s needs) [111,23].

In general, vision-based human motion analysis systems
used for MMHCI can be thought of as having mainly four
stages: (1) motion segmentation, (2) object classification,
(3) tracking, and (4) interpretation. While some approaches
use geometric primitives to model different components
(e.g., cylinders used to model limbs, head, and torso for
body movements, or for hand and fingers in gesture recog-
nition), others use feature representations based on appear-
ance (appearance-based methods). In the first approach,
external markers are often used to estimate body posture
and relevant parameters. While markers can be accurate,
they place restrictions on clothing and require calibration,
so they are not desirable in many applications. Moreover,
the attempt to fit geometric shapes to body parts can be
computationally expensive and these methods are often
not suitable for real-time processing. Appearance based
methods, on the other hand, do not require markers, but
require training (e.g., with machine learning, probabilistic
approaches, etc.). Since they do not require markers, they
place fewer constraints on the user and are therefore more
desirable.

Next, we briefly discuss some specific techniques for
body, gesture, and gaze. The motion analysis steps are sim-
ilar, so there is some inevitable overlap in the discussions.
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Some of the issues for gesture recognition, for instance,
apply to body movements and gaze detection.

3.1. Large-scale body movements

Tracking of large-scale body movements (head, arms,
torso, and legs) is necessary to interpret pose and motion
in many MMHCI applications. However, since extensive
surveys have been published in this area [182,56,107,183],
we discuss the topic briefly.

There are three important issues in articulated motion
analysis [188]: representation (joint angles or motion of
all the sub-parts), computational paradigms (deterministic
or probabilistic), and computation reduction. Body posture
analysis is important in many MMHCI applications. For
example, in [172], the authors use a stereo and thermal
infrared video system to estimate the driver’s posture for
deployment of smart air bags. The authors of [148] propose
a method for recovering articulated body pose without ini-
tialization and tracking (using learning). The authors of [8]
use pose and velocity vectors to recognize body parts and
detect different activities, while the authors of [17] use tem-
poral templates.

In some emerging MMHCI applications, group and
non-command actions play an important role. In [102],
visual features are extracted from head and hand/forearm
blobs: the head blob is represented by the vertical posi-
tion of its centroid, and hand blobs are represented by
eccentricity and angle with respect to the horizontal.
These features together with audio features (e.g., energy,
pitch, and speaking rate, among others) are used for seg-
menting meeting videos according to actions such as
monologue, presentation, white-board, discussion, and
note taking. The authors of [60] use only computer
vision, but make a distinction between body movements,
events, and behaviors, within a rule-based system
framework.

Important issues for large-scale body tracking include
whether the approach uses 2D or 3D, desired accuracy,
speed, occlusion and other constraints. Some of the issues
pertaining to gesture recognition, discussed next, can also
apply to body tracking.

3.2. Hand gesture recognition

Although in human–human communication gestures
are often performed using a variety of body parts (e.g.,
arms, eyebrows, legs, entire body, etc.), most researchers
in computer vision use the term gesture recognition to
refer exclusively to hand gestures. We will use the term
accordingly and focus on hand gesture recognition in this
section.

Psycholinguistic studies of human-to-human communi-
cation [103] describe gestures as the critical link between
our conceptualizing capacities and our linguistic abilities.
Humans use a very wide variety of gestures ranging from
simple actions of using the hand to point at objects, to
the more complex actions that express feelings and allow
communication with others. Gestures should, therefore,
play an essential role in MMHCI [83,186,52], as they
seem intrinsic to natural interaction between the human
and the computer-controlled interface in many applica-
tions, ranging from virtual environments [82] and smart
surveillance [174], to remote collaboration applications
[52].

There are several important issues that should be con-
sidered when designing a gesture recognition system
[136]. The first phase of a recognition task is choosing a
mathematical model that may consider both the spatial
and the temporal characteristics of the hand and hand ges-
tures. The approach used for modeling plays a crucial role
in the nature and performance of gesture interpretation.
Typically, features are extracted from the images or video,
and once these features are extracted, model parameters
are estimated based on subsets of them until a right match
is found. For example, the system might detect n points and
attempt to determine if these n points (or a subset of them)
could match the characteristics of points extracted from a
hand in a particular pose or performing a particular action.
The parameters of the model are then a description of the
hand pose or trajectory and depend on the modeling
approach used. Among the important problems involved
in the analysis are hand localization [187], hand tracking
[194], and the selection of suitable features [83]. After the
parameters are computed, the gestures represented by them
need to be classified and interpreted based on the accepted
model and based on some grammar rules that reflect the
internal syntax of gestural commands. The grammar may
also encode the interaction of gestures with other commu-
nication modes such as speech, gaze, or facial expressions.
As an alternative to modeling, some authors have explored
the use of combinations of simple 2D motion based detec-
tors for gesture recognition [71].

In any case, to fully exploit the potential of gestures
for an MMHCI application, the class of possible recog-
nized gestures should be as broad as possible and ideally
any gesture performed by the user should be unambigu-
ously interpretable by the interface. However, most of
the gesture-based HCI systems allow only symbolic com-
mands based on hand posture or 3D pointing. This is due
to the complexity associated with gesture analysis and the
desire to build real-time interfaces. Also, most of the sys-
tems accommodate only single-hand gestures. Yet, human
gestures, especially communicative gestures, naturally
employ actions of both hands. However, if the two-hand
gestures are to be allowed, several ambiguous situations
may appear (e.g., occlusion of hands, intentional vs. unin-
tentional, etc.) and the processing time will likely
increase. Another important aspect that is increasingly
considered is the use of other modalities (e.g., speech)
to augment the MMHCI system [127,162]. The use of
such multimodal approaches can reduce the complexity
and increase the naturalness of the interface for MMHCI
[126].
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3.3. Gaze detection

Gaze, defined as the direction to which the eyes are
pointing in space, is a strong indicator of attention, and
it has been studied extensively since as early as 1879 in psy-
chology, and more recently in neuroscience and in comput-
ing applications [41]. While early eye tracking research
focused only on systems for in-lab experiments, many com-
mercial and experimental systems are available today for a
wide range of applications.

Eye tracking systems can be grouped into wearable or
non-wearable, and infrared-based or appearance-based.
In infrared-based systems, a light shining on the subject
whose gaze is to be tracked creates a ‘‘red-eye effect:’’ the
difference in reflection between the cornea and the pupil
is used to determine the direction of sight. In appearance-
based systems, computer vision techniques are used to find
the eyes in the image and then determine their orientation.
While wearable systems are the most accurate (approxi-
mate error rates below 1.4� vs. errors below 1.7� for non-
wearable infrared), they are also the most intrusive. Infra-
red systems are more accurate than appearance-based, but
there are concerns over the safety of prolonged exposure to
infrared lights. In addition, most non-wearable systems
require (often cumbersome) calibration for each individual
[108,121].

Appearance-based systems usually capture both eyes
using two cameras to predict gaze direction. Due to the
computational cost of processing two streams simulta-
neously, the resolution of the image of each eye is often
small. This makes such systems less accurate, although
increasing computational power and lower costs mean that
more computationally intensive algorithms can be run in
real time. As an alternative, in [181], the authors propose
using a single high-resolution image of one eye to improve
accuracy. On the other hand, infrared-based systems usu-
ally use only one camera, but the use of two cameras has
been proposed to further increase accuracy [152].

Although most research on non-wearable systems has
focused on desktop users, the ubiquity of computing
devices has allowed for application in other domains in
which the user is stationary (e.g., [168,152]). For example,
the authors of [168] monitor driver visual attention using
a single, non-wearable camera placed on a car’s dashboard
to track face features and for gaze detection.

Wearable eye trackers have also been investigated
mostly for desktop applications (or for users that do not
walk wearing the device). Also, because of advances in
hardware (e.g., reduction in size and weight) and lower
costs, researchers have been able to investigate uses in
novel applications. For example, in [193], eye tracking data
are combined with video from the user’s perspective, head
directions, and hand motions to learn words from natural
interactions with users; the authors of [137] use a wearable
eye tracker to understand hand–eye coordination in natu-
ral tasks, and the authors of [38] use a wearable eye tracker
to detect eye contact and record video for blogging.
The main issues in developing gaze tracking systems are
intrusiveness, speed, robustness, and accuracy. The type of
hardware and algorithms necessary, however, depend
highly on the level of analysis desired. Gaze analysis can
be performed at three different levels [23]: (a) highly
detailed low-level micro-events, (b) low-level intentional
events, and (c) coarse-level goal-based events. Micro-events
include micro-saccades, jitter, nystagmus, and brief fixa-
tions, which are studied for their physiological and psycho-
logical relevance by vision scientists and psychologists.
Low-level intentional events are the smallest coherent units
of movement that the user is aware of during visual activ-
ity, which include sustained fixations and revisits. Although
most of the work on HCI has focused on coarse-level goal-
based events (e.g., using gaze as a pointer [165]), it is easy
to foresee the importance of analysis at lower levels, partic-
ularly to infer the user’s cognitive state in affective inter-
faces (e.g., [62]). Within this context, an important issue
often overlooked is how to interpret eye-tracking data. In
other words, as the user moves his eyes during interaction,
the system must decide what the movements mean in order
to react accordingly. We move our eyes 2–3 times per sec-
ond, so a system may have to process large amounts of
data within a short time, a task that is not trivial even if
processing does not occur in real-time. One way to inter-
pret eye tracking data is to cluster fixation points and
assume, for instance, that clusters correspond to areas of
interest. Clustering of fixation points is only one option,
however, and as the authors of [154] discuss, it can be dif-
ficult to determine the clustering algorithm parameters.
Other options include obtaining statistics on measures such
as number of eye movements, saccades, distances between
fixations, order of fixations, and so on.

4. Affective human–computer interaction

Most current MMHCI systems do not account for the
fact that human–human communication is always socially
situated and that we use emotion to enhance our commu-
nication. However, since emotion is often expressed in a
multimodal way, it is an important area for MMHCI and
we will discuss it in some detail. HCI systems that can sense
the affective states of the human (e.g., stress, inattention,
anger, boredom, etc.) and are capable of adapting and
responding to these affective states are likely to be per-
ceived as more natural, efficacious, and trustworthy. In
her book, Picard [140] suggested several applications where
it is beneficial for computers to recognize human emotions.
For example, knowing the user’s emotions, the computer
can become a more effective tutor. Synthetic speech with
emotions in the voice would sound more pleasing than a
monotonous voice. Computer agents could learn the user’s
preferences through the users’ emotions. Another applica-
tion is to help the human users monitor their stress level.
In clinical settings, recognizing a person’s inability to
express certain facial expressions may help diagnose early
psychological disorders.
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The research area of machine analysis and employment
of human emotion to build more natural and flexible HCI
systems is known by the general name of affective comput-
ing [140]. There is a vast body of literature on affective
computing and emotion recognition [67,132,140,133].
Emotion is intricately linked to other functions such as
attention, perception, memory, decision-making, and
learning [43]. This suggests that it may be beneficial for
computers to recognize the user’s emotions and other
related cognitive states and expressions. Addressing the
problem of affective communication, Bianchi-Berthouze
and Lisetti [14] identified three key points to be considered
when developing systems that capture affective informa-
tion: embodiment (experiencing physical reality), dynamics
(mapping the experience and the emotional state onto a
temporal process and a particular label), and adaptive inter-

action (conveying emotive response, responding to a recog-
nized emotional state).

Researchers use mainly two different methods to analyze
emotions [133]. One approach is to classify emotions into
discrete categories such as joy, fear, love, surprise, sadness,
etc., using different modalities as inputs. The problem is
that the stimuli may contain blended emotions and the
choice of these categories may be too restrictive, or cultur-
ally dependent. Another way is to have multiple dimen-
sions or scales to describe emotions. Two common scales
are valence and arousal [61]. Valence describes the pleas-
antness of the stimuli, with positive or pleasant (e.g.,
happiness) on one end, and negative or unpleasant (e.g.,
disgust) on the other. The other dimension is arousal or
activation. For example, sadness has low arousal, whereas
surprise has a high arousal level. The different emotional
labels could be plotted at various positions on a 2D plane
spanned by these two axes to construct a 2D emotion
model [88,60].

Facial expressions and vocal emotions are particularly
important in this context, so we discuss them in more detail
below.

4.1. Facial expression recognition

Most facial expression recognition research (see [131]
and [47] for two comprehensive reviews) has been inspired
by the work of Ekman [43] on coding facial expressions
based on the basic movements of facial features called
action units (AUs). In order to offer a comprehensive
description of the visible muscle movement in the face,
Ekman proposed the Facial Action Coding System
(FACS). In the system, a facial expression is a high level
description of facial motions represented by regions or fea-
ture points called action units. Each AU has some related
muscular basis and a given facial expression may be
described by a combination of AUs. Some methods follow
a feature-based approach, where one tries to detect and
track specific features such as the corners of the mouth,
eyebrows, etc. Other methods use a region-based approach
in which facial motions are measured in certain regions on
the face such as the eye/eyebrow and the mouth. In addi-
tion, we can distinguish two types of classification schemes:
dynamic and static. Static classifiers (e.g., Bayesian Net-
works) classify each frame in a video to one of the facial
expression categories based on the results of a particular
video frame. Dynamic classifiers (e.g., HMM) use several
video frames and perform classification by analyzing the
temporal patterns of the regions analyzed or features
extracted. Dynamic classifiers are very sensitive to appear-
ance changes in the facial expressions of different individu-
als so they are more suited for person-dependent
experiments [32]. Static classifiers, on the other hand, are
easier to train and in general need less training data but
when used on a continuous video sequence they can be
unreliable especially for frames that are not at the peak
of an expression.

Mase [99] was one of the first to use image processing
techniques (optical flow) to recognize facial expressions.
Lanitis et al. [90] used a flexible shape and appearance
model for image coding, person identification, pose recov-
ery, gender recognition, and facial expression recognition.
Black and Yacoob [15] used local parameterized models
of image motion to recover non-rigid motion. Once recov-
ered, these parameters are fed to a rule-based classifier to
recognize the six basic facial expressions. Yacoob and
Davis [189] computed optical flow and used similar rules
to classify the six facial expressions. Rosenblum et al.
[149] also computed optical flow of regions on the face,
then applied a radial basis function network to classify
expressions. Essa and Pentland [45] also used an optical
flow region-based method to recognize expressions. Otsuka
and Ohya [117] first compute optical flow, then compute
2D Fourier transform coefficients, which were then used
as feature vectors for a hidden Markov model (HMM) to
classify expressions. The trained system was able to recog-
nize one of the six expressions near real-time (about 10 Hz).
Furthermore, they used the tracked motions to control the
facial expression of an animated Kabuki system [118].
A similar approach, using different features was used by
Lien [93]. Nefian and Hayes [110] proposed an embedded
HMM approach for face recognition that uses an efficient
set of observation vectors based on DCT coefficients. Mar-
tinez [98] introduced an indexing approach based on the
identification of frontal face images under different illumi-
nation conditions, facial expressions, and occlusions. A
Bayesian approach was used to find the best match
between the local observations and the learned local fea-
tures model and an HMM was employed to achieve good
recognition even when the new conditions did not corre-
spond to the conditions previously encountered during
the learning phase. Oliver et al. [116] used lower face track-
ing to extract mouth shape features and used them as
inputs to an HMM based facial expression recognition sys-
tem (recognizing neutral, happy, sad, and an open mouth).
Chen [28] used a suite of static classifiers to recognize facial
expressions, reporting on both person-dependent and per-
son-independent results.
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In spite of the variety of approaches to facial affect anal-
ysis, the majority suffer from the following limitations [132]:

• handle a small set of posed prototypical facial expres-
sions of six basic emotions from portraits or nearly fron-
tal views of faces with no facial hair or glasses recorded
under constant illumination;

• do not perform a context-dependent interpretation of
shown facial behavior;

• do not analyze extracted facial information on different
time scales (short videos are handled only); conse-
quently, inferences about the expressed mood and atti-
tude (larger time scales) cannot be made by current
facial affect analyzers.

4.2. Emotion in audio

The vocal aspect of a communicative message carries
various kinds of information. If we disregard the manner
in which a message is spoken and consider only the textual
content, we are likely to miss the important aspects of the
utterance and we might even completely misunderstand the
meaning of the message. Nevertheless, in contrast to spo-
ken language processing, which has recently witnessed sig-
nificant advances, the processing of emotional speech has
not been widely explored.

Starting in the 1930s, quantitative studies of vocal emo-
tions have had a longer history than quantitative studies of
facial expressions. Traditional as well as most recent stud-
ies on emotional contents in speech (see [119,109,72,155])
use ‘‘prosodic’’ information, that is information on intona-
tion, rhythm, lexical stress, and other features in speech.
This is extracted using measures such as pitch, duration,
and intensity of the utterance. Recent studies use ‘‘Ekman’s
six’’ basic emotions, although others in the past have used
many more categories. The reasons for using these basic
categories are often not justified since it is not clear whether
there exist ‘‘universal’’ emotional characteristics in the
voice for these six categories [27].

The limitations of existing vocal-affect analyzers are
[132]:

• perform singular classification of input audio signals into
a few emotion categories such as anger, irony, happiness,
sadness/grief, fear, disgust, surprise and affection;

• do not perform a context-sensitive analysis (environ-
ment-, user- and task-dependent analysis) of the input
audio signal;

• do not analyze extracted vocal expression information
on different time scales (proposed inter-audio-frame
analyses are used either for the detection of supra-seg-
mental features, such as the pitch and intensity over
the duration of a syllable or word, or for the detection
of phonetic features)—inferences about moods and atti-
tudes (longer time scales) are difficult to make based on
the current vocal-affect analyzers;
• adopt strong assumptions (e.g., the recordings are noise
free, the recorded sentences are short, delimited by
pauses etc.) and use the test data sets that are small
(one or more words or one or more short sentences spo-
ken by few subjects) containing exaggerated vocal
expressions of affective states.

4.3. Multimodal approaches to emotion recognition

The most surprising issue regarding the multimodal
affect recognition problem is that although recent advances
in video and audio processing could make the multimodal
analysis of human affective state tractable, there are only a
few research efforts [80,159,195,157] that have tried to
implement a multimodal affective analyzer.

Although studies in psychology on the accuracy of
predictions from observations of expressive behavior sug-
gest that the combined face and body approaches are the
most informative [4,59], with the exception of a tentative
attempt of Balomenos et al. [7], there is virtually no
other effort reported on automatic human affect analysis
from combined face and body gestures. In the same way,
studies in facial expression recognition and vocal affect
recognition have been done largely independent of each
other. Most works in facial expression recognition use
still photographs or video sequences without speech.
Similarly, works on vocal emotion detection often use
only audio information. A legitimate question that
should be considered in MMHCI is how much informa-
tion does the face, as compared to speech, and body
movement, contribute to natural interaction. Most exper-
imenters suggest that the face is more accurately judged,
produces higher agreement, or correlates better with
judgments based on full audiovisual input than on voice
input [104,195].

Examples of existing works combining different
modalities into a single system for human affective state
analysis are those of Chen [27], Yoshitomi et al. [192],
De Silva and Ng [166], Go et al. [57], and Song et al.
[169], who investigated the effects of a combined detec-
tion of facial and vocal expressions of affective states.
In brief, these works achieve an accuracy of 72–85%
when detecting one or more basic emotions from clean
audiovisual input (e.g., noise-free recordings, closely
placed microphone, non-occluded portraits) from an
actor speaking a single word and showing exaggerated
facial displays of a basic emotion. Although audio and
image processing techniques in these systems are relevant
to the discussion on the state of the art in affective
computing, the systems themselves have most of the
drawbacks of unimodal affect analyzers. Many improve-
ments are needed if those systems are to be used
for multimodal HCI where clean input from a known
actor/announcer cannot be expected and context inde-
pendent, separate processing, and interpretation of audio
and visual data does not suffice.
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5. Modeling, fusion, and data collection

Multimodal interface design [146] is important because
the principles and techniques used in traditional GUI-
based interaction do not necessarily apply in MMHCI sys-
tems. Issues to consider, as identified in Section 2, include
the design of inputs and outputs, adaptability, consistency,
and error handling, among others. In addition, one must
consider dependency of a person’s behavior on his/her per-
sonality, cultural, and social vicinity, current mood, and
the context in which the observed behavioral cues are
encountered [164,70,75].

Many design decisions dictate the underlying techniques
used in the interface. For example, adaptability can be
addressed using machine learning: rather than using a pri-
ori rules to interpret human behavior, we can potentially
learn application-, user-, and context-dependent rules by
watching the user’s behavior in the sensed context [138].
Well known algorithms exist to adapt the models and it
is possible to use prior knowledge when learning new mod-
els. For example, a prior model of emotional expression
recognition trained based on a certain user can be used
as a starting point for learning a model for another user,
or for the same user in a different context. Although con-
text sensing and the time needed to learn appropriate rules
are significant problems in their own right, many benefits
could come from such adaptive MMHCI systems.

First we discuss architectures, followed by modeling,
fusion, data collection, and testing.

5.1. System integration architectures

The most common infrastructure that has been adopted
by the multimodal research community involves multi-
agent architectures such as the Open Agent Architecture

[97] and Adaptive Agent Architecture [86,31]. Multi-agent
architectures provide essential infrastructure for coordinat-
ing the many complex modules needed to implement mul-
timodal system processing and permit this to be done in a
distributed manner. In a multi-agent architecture, the com-
ponents needed to support the multimodal system (e.g.,
speech recognition, gesture recognition, natural language
processing, multimodal integration) may be written in dif-
ferent programming languages, on different machines, and
with different operating systems. Agent communication
languages are being developed that handle asynchronous
delivery, triggered responses, multi-casting, and other con-
cepts from distributed systems.

When using a multi-agent architecture, for example,
speech and gestures can arrive in parallel or asynchro-
nously via individual modality agents, with the results
passed to a facilitator. These results, typically an n-best list
of conjectured lexical items and related time-stamp infor-
mation, are then routed to appropriate agents for further
language processing. Next, sets of meaning fragments
derived from the speech, or other modality, arrive at the
multimodal integrator which decides whether and how long
to wait for recognition results from other modalities, based
on the system’s temporal thresholds. It fuses the meaning
fragments into a semantically and temporally compatible
whole interpretation before passing the results back to
the facilitator. At this point, the system’s final multimodal
interpretation is confirmed by the interface, delivered as
multimedia feedback to the user, and executed by the rele-
vant application.

Despite the availability of high-accuracy speech recog-
nizers and the maturing of devices such as gaze trackers,
touch screens, and gesture trackers, very few applications
take advantage of these technologies. One reason for this
may be that the cost in time of implementing a multimodal
interface is very high. If someone wants to equip an appli-
cation with such an interface, he must usually start from
scratch, implementing access to external sensors, develop-
ing ambiguity resolution algorithms, etc. However, when
properly implemented, a large part of the code in a multi-
modal system can be reused. This aspect has been identified
and many multimodal application frameworks (using
multi-agent architectures) have recently appeared such as
VTT’s Japis framework [179], Rutgers CAIP Center frame-
work [49], and the Embassi system [44].

5.2. Modeling

There have been several attempts in modeling humans in
the human–computer interaction literature [191]. Here we
present some proposed models and we discuss their partic-
ularities and weaknesses.

One of the most commonly used models in HCI is the
Model Human Processor. The model, proposed in [24] is
a simplified view of the human processing involved in inter-
acting with computer systems. This model comprises three
subsystems namely, the perceptual system handling sensory
stimulus from the outside world, the motor system that con-
trols actions, and the cognitive system that provides the nec-
essary processing to connect the two. Retaining the
analogy of the user as an information processing system,
the components of an MMHCI model include an input–
output component (sensory system), a memory component
(cognitive system), and a processing component (motor
system). Based on this model, the study of input–output
channels (vision, hearing, touch, movement), human mem-
ory (sensory, short-term, and working or long-term mem-
ory), and processing capabilities (reasoning, problem
solving, or acquisition skills) should all be considered when
designing MMHCI systems and applications. Many studies
in the literature analyze each subsystem in detail and we
point the interested reader to [39] for a comprehensive
analysis.

Another model, proposed by Card et al. [24], is the
GOMS (Goals, Operators, Methods, and Selection rules)
model. GOMS is essentially a reduction of a user’s interac-
tion with a computer to its elementary actions and all exist-
ing GOMS variations [24] allow for different aspects of an
interface to be accurately studied and predicted. For all of
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the variants, the definitions of the major concepts are the
same. Goals are what the user intends to accomplish. An
operator is an action performed in service of a goal. A
method is a sequence of operators that accomplish a goal
and if more than one method exists, then one of them is
chosen by some selection rule. Selection rules are often
ignored in typical GOMS analyses. There is some flexibility
for the designers/analysts definition of all of these entities.
For instance, one person’s operator may be another’s goal.
The level of granularity is adjusted to capture what the par-
ticular evaluator is examining.

All of the GOMS techniques provide valuable informa-
tion, but they all also have certain drawbacks. None of the
techniques address user fatigue. Over time a user’s perfor-
mance degrades simply because the user has been perform-
ing the same task repetitively. The techniques are very
explicit about basic movement operations, but are gener-
ally less rigid for basic cognitive actions. Further, all of
the techniques are only applicable to expert users and the
functionality of the system is ignored while only the usabil-
ity is considered.

The human action cycle [114] is a psychological model
which describes the steps humans take when they interact
with computer systems. The model can be used to help
evaluate the efficiency of a user interface (UI). Understand-
ing the cycle requires an understanding of the user interface
design principles of affordance, feedback, visibility, and tol-
erance. This model describes how humans may form goals
and then develop a series of steps required to achieve those
goals, using the computer system. The user then executes
the steps, thus the model includes both cognitive and phys-
ical activities.

5.3. Adaptability

The number of computer users (and computer-like
devices we interact with) has grown at an incredible pace
in the last few years. An immediate consequence of this is
that there is much larger diversity in the ‘‘types’’ of com-
puter users. Increasing differences in skill level, culture, lan-
guage, and goals have resulted in a significant trend
towards adaptive and customizable interfaces, which use
modeling and reasoning about the domain, the task, and
the user, in order to extract and represent the user’s knowl-
edge, skills, and goals, to better serve the users with their
tasks. The goal of such systems is to adapt their interface
to a specific user, give feedback about the user’s knowl-
edge, and predict the user’s future behavior such as
answers, goals, preferences, and actions [76]. Several stud-
ies [173] provide empirical support for the concept that user
performance can be increased when the interface character-
istics match the user skill level, emphasizing the importance
of adaptive user interfaces.

Adaptive human–computer interaction promises to sup-
port more sophisticated and natural input and output, to
enable users to perform potentially complex tasks more
quickly, with greater accuracy, and to improve user satis-
faction. This new class of interfaces promises knowledge
or agent-based dialog, in which the interface gracefully
handles errors and interruptions, and dynamically adapts
to the current context and situation, the needs of the task
performed, and the user model. This interactive process is
believed to have great potential for improving the effective-
ness of human–computer interaction [100], and therefore, is
likely to play a major role in MMHCI. The overarching
aim of intelligent interfaces is to both increase the interac-
tion bandwidth between human and machine and, at the
same time, increase interaction effectiveness and natural-
ness by improving the quality of interaction. Effective
human machine interfaces and information services will
also increase access and productivity for all users [89]. A
grand challenge of adaptive interfaces is therefore to repre-
sent, reason, and exploit various models to more effectively
process input, generate output, and manage the dialog and
interaction between human and machine to maximize the
efficiency, effectiveness, and naturalness, if not joy, of inter-
action [133].

One central feature of adaptive interfaces is the manner
in which the system uses the learned knowledge. Some
works in applied machine learning are designed to produce
expert systems that are intended to replace the human.
However, works in adaptive interfaces intend to construct
advisory-recommendation systems, which only make rec-
ommendations to the user. These systems suggest informa-
tion or generate actions that the user can always override.
Ideally, these actions should reflect the preferences of the
individual users, thus providing personalized services to
each one.

Every time the system suggests a choice to the user, he or
she accepts it or rejects it, thus giving feedback to the sys-
tem to update its knowledge base either implicitly or explic-
itly [6]. The system should carry out online learning, in
which the knowledge base is updated each time an interac-
tion with the user occurs. Since adaptive user interfaces col-
lect data during their interaction with the user, one
naturally expects them to improve during the interaction
process, making them ‘‘learning’’ systems rather than
‘‘learned’’ systems. Because adaptive user interfaces must
learn from observing the behavior of their users, another
distinguishing characteristic of these systems is their need
for rapid learning. The issue here is the number of training
cases needed by the system to generate good advice. Thus,
it is recommended the use of learning methods and algo-
rithms that achieve high accuracy from small training sets.
On the other hand, speed of interface adaptation to user’s
needs is also desirable.

Adaptive user interfaces should not be considered a pan-
acea for all problems. The designer should seriously take
under consideration if the user really needs an adaptive sys-
tem. The most common concern regarding the use of adap-
tive interfaces is the violation of standard usability
principles. In fact, evidence exists that suggests that static
interface designs sometimes promote superior performance
than adaptive ones [64,163]. Nevertheless, the benefits that
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adaptive systems can bring are undeniable and therefore
more and more research efforts are being made in this
direction.

An important issue is how the interaction techniques
should change to take the varying input and output hard-
ware devices into account. The system might choose the
appropriate interaction techniques taking into account
the input and output capabilities of the devices and the user
preferences. So, nowadays, many researchers are focusing
on context aware interfaces, recognition-based interfaces,
intelligent and adaptive interfaces, and multimodal percep-
tual interfaces [33,76,100,89,176,177].

Although there have been many advances in MMHCI,
the level of adaptability in current systems is rather limited
and there are many challenges left to be investigated.

5.4. Fusion

Fusion techniques are needed to integrate input from
different modalities and many fusion approaches have been
developed. Early multimodal interfaces were based on a
specific control structure for multimodal fusion. For exam-
ple, Bolt’s ‘‘Put-That-There’’ system [18] combined point-
ing and speech inputs and searched for a synchronized
gestural act that designates the spoken referent. To support
more broadly functional multimodal systems, general pro-
cessing architectures have been developed which handle a
variety of multimodal integration patterns and support
joint processing of modalities [16,86,97,161].

A typical issue of multimodal data processing is that
multisensory data are typically processed separately and
only combined at the end. Yet, people convey multimodal
(e.g., audio and visual) communicative signals in a com-
plementary and redundant manner (as shown experimen-
tally by Chen [27]). Therefore, in order to accomplish a
human-like multimodal analysis of multiple input signals
acquired by different sensors, the signals cannot be always
considered mutually independently and might not be
combined in a context-free manner at the end of the
intended analysis but, on the contrary, the input data
might preferably be processed in a joint feature space
and according to a context-dependent model. In practice,
however, besides the problems of context sensing and
developing context-dependent models for combining mul-
tisensory information, one should cope with the size of
the required joint feature space. Problems include large
dimensionality, differing feature formats, and time-align-
ment. A potential way to achieve multisensory data
fusion is to develop context-dependent versions of a suit-
able method such as the Bayesian inference method pro-
posed by Pan et al. [130].

Multimodal systems usually integrate signals at the fea-

ture level (early fusion), at a higher semantic level (late
fusion), or something in between (intermediate fusion)
[178,37]. In the following sections we present these fusion
techniques in detail and we analyze their advantages and
disadvantages.
5.4.1. Early fusion techniques

In an early fusion architecture, the signal-level recogni-
tion process in one mode influences the course of recogni-
tion in the other and so, this type of fusion is considered
more appropriate for closely temporally synchronized
input modalities, such as speech and lip movements. This
class of techniques utilizes a single classifier avoiding the
explicit modeling of different modalities.

To give an example of audio–visual integration using an
early fusion approach, one simply concatenates the audio
and visual feature vectors to obtain a single combined
audio–visual vector [1]. In order to reduce the length of
the resulting feature vector, dimensionality reduction tech-
niques like LDA are usually applied before the feature vec-
tor finally feeds the recognition engine. The classifier
utilized by most early integration systems is a conventional
hidden Markov model (HMM) which is trained with the
mixed audio–visual feature vector.

5.4.2. Intermediate fusion techniques

Since the early fusion techniques avoid explicit modeling
of the different modalities, they fail to model both the fluc-
tuations in the relative reliability and the asynchrony prob-
lems between the distinct (e.g., audio and visual) streams.
Moreover, a multimodal system should be able to deal with
imperfect data and generate its conclusion so that the cer-
tainty associated with it varies in accordance to the input
data. A way of achieving this is to consider the time-
instance versus time-scale dimension of human non-verbal
communicative signals [132]. By considering previously
observed data with respect to the current data carried by
functioning observation channels, a statistical prediction
and its probability might be derived about both the infor-
mation that has been lost due to malfunctioning/inaccu-
racy of a particular sensor and the currently displayed
action/reaction. Probabilistic graphical models, such as
Hidden Markov Models (including their hierarchical vari-
ants), Bayesian networks, and Dynamic Bayesian networks
are very well suited for fusing such different sources of
information [156]. These models can handle noisy features,
temporal information, and missing values of features by
probabilistic inference. Hierarchical HMM-based systems
[32] have been shown to work well for facial expression rec-
ognition. Dynamic Bayesian Networks and HMM variants
[54] have been shown to fuse various sources of informa-
tion in recognizing user intent, office activity, and event
detection in video using both audio and visual information
[53]. This suggests that probabilistic graphical models are a
promising approach to fusing realistic (noisy) audio and
video for context-dependent detection of behavioral events
such as affective states.

5.4.3. Late integration techniques

Multimodal systems based on late (semantic) fusion inte-
grate common meaning representations derived from differ-
ent modalities into a combined final interpretation. This
requires a common meaning representation framework for
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all modalities used and a well-defined operation for inte-
grating partial meanings. Meaning based representation
uses data structures such as frames [106], feature structures

[81], or typed feature structures [25]. Frames represent
objects and relations as consisting of nested sets of attri-
bute/value pairs while feature structures go further to use
shared variables to indicate common substructures. Typed

feature structures are pervasive in natural language process-
ing and their primary operation is unification, which deter-
mines the consistency of two representational structures
and, if they are consistent, their combination.

Late integration models often utilize independent classi-
fiers (e.g., HMMs), one for each stream, which can be
trained independently. The final classification decision is
reached by combining the partial outputs of the unimodal
classifiers. The correlations between the channels are taken
into account only later during the integration step. There
are advantages though when using late integration [178].
Since the input types can be recognized independently, they
do not have to occur simultaneously. Moreover, the train-
ing requirements are smaller O(2N) for two separately
trained modalities as compared to O(N2) for two modali-
ties trained together. The software development process is
also simpler in the late integration case [178].

Systems using the late fusion approach have been
applied to processing multimodal speech and pen input
or manual gesturing, for which the input modes are less
coupled temporally and provide different but complemen-
tary information. Late semantic integration systems use
individual recognizers that can be trained using unimodal
data and can be scaled up more easily in a number of
input modes or vocabulary size. To give an example, in
an audio–visual speech recognition application [143], for
small-vocabulary independent word speech recognition,
late integration can be easily implemented by combining
the audio- and visual-only log-likelihood scores for each
word model in the vocabulary, given the acoustics and
visual observations [1]. However, this approach is intracta-
ble in the case of connected word recognition where the
number of alternative paths explodes. A good heuristic
alternative in that case is through lattice rescoring. The
n-most promising hypotheses are extracted from the
audio-only recognizer and they are rescored after taking
the visual evidence into account. The hypothesis with the
highest combined score is then selected. More details about
this approach can be found in [143].

Very important for MMHCI applications is the fusion
between the visual and audio channels. Successful audio
and visual feature integration requires utilization of
advanced techniques and models for cross-model informa-
tion fusion. This research area is currently very active and
many different paradigms have been proposed for address-
ing the general problem. Therefore, we will confine the fol-
lowing discussion to the problem of feature fusion in the
context of audiovisual feature integration. We note, how-
ever, that similar issues exist in the integration of any other
modalities.
When considering audio–visual integration in speech,
the main task that needs to be addressed is the fusion of
the heterogeneous pool of audio and visual features in a
way that ensures that the combined audiovisual system
outperforms its audio- or video-only counterpart in all
practical scenarios. This task is complicated due to several
issues, the most important being:

(1) audio and visual speech asynchrony. Although the
audio and visual observation sequences are certainly
correlated over time, they exhibit state asynchrony
(e.g., in speech, lip movement is preceding auditory
activity by as much as 120 ms [21], close to the aver-
age duration of a phoneme). This asynchrony is crit-
ical in applications such as audio–visual speech
recognition because it renders modeling audiovisual
speech with conventional HMMs problematic [145];

(2) the relative discriminating power of the audio and
visual streams can vary dramatically in unconstrained
environments, making their optimal fusion a chal-
lenging task.

Despite important advances, further research is still
required to investigate fusion models able to efficiently
use the complementary cues provided by multiple
modalities.

5.5. Data collection and testing

Collecting MMHCI data and obtaining the ground
truth for it is a challenging task. Labeling is time-consum-
ing, error prone, and expensive. For example, in developing
multimodal techniques for emotion recognition, one
approach consists of asking actors to read material aloud
while simultaneously portraying particular emotions cho-
sen by the investigators. Another approach is to use emo-
tional speech from real conversations or to induce
emotions from speakers using various methods (e.g., show-
ing photos or videos to induce reactions). Using actor por-
trayals ensures control of the verbal material and the
encoder’s intention, but raises the question about the sim-
ilarity between posed and naturally occurring expressions.
Asking someone to smile often does not create the same
picture as an authentic smile. The fundamental reason of
course is that the subject often does not feel happy so his
smile is artificial and in many subtle ways quite different
from a genuine smile [133]. Using real emotional speech,
on the other hand, ensures high validity, but renders the
control of verbal material and encoder intention more dif-
ficult. Induction methods are effective in inducing moods,
but it is harder to induce intense emotional states in con-
trolled laboratory settings.

In general, collection of data for an MMHCI applica-
tion is challenging because there is wide variability in the
set of possible inputs (consider the number of possible ges-
tures), often only a small set of training examples is avail-
able, and the data is often noisy. Therefore, it is very
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beneficial to construct methods that use scarcely available
labeled data and abundant unlabeled data. Probabilistic
graphical models are ideal candidates for tasks in which
labeled data is scarce, but abundant unlabeled data is avail-
able. Cohen et al. [31] showed that unlabeled data could be
used together with labeled data for MMHCI applications
using Bayesian networks. However, they have shown that
care must be taken when attempting such schemes. In the
purely supervised case (only labeled data), adding more
labeled data improves the performance of the classifier.
Adding unlabeled data, however, can be detrimental to
the performance. Such detrimental effects occur when the
assumed classifier’s model does not match the data’s distri-
bution. As a consequence, further research is necessary to
achieve maximum utilization of unlabeled data for
MMHCI problems since it is clear that such methods could
provide great benefit.

Picard et al. [141] outlined five factors that influence
affective data collection. We list them below since they also
apply to the more general problem of MMHCI data
collection:

• Spontaneous versus posed: is the emotion elicited by a
situation or stimulus outside the subject’s control or
the subject is asked to elicit the emotion?

• Lab setting versus real-world: is the data recording tak-
ing place in a lab or the emotion is recorded in the usual
environment of the subject?

• Expression versus feeling: is the emphasis on external
expression or on internal feeling?

• Open recording versus hidden recording: is the subject
aware that he is being recorded?

• Emotion-purpose versus other-purpose: does the subject
know that he is a part of an experiment and the experi-
ment is about emotion?

Note that these factors are not necessarily independent.
The most natural setup would imply that the subject feels
the emotion internally (feeling), and the emotion occurs
spontaneously, while the subject is in his usual environment
(real-world). Also, the subject should not know that he is
being recorded (hidden recording) and that he is part of
an experiment (other-purpose). Such data are usually
impossible to obtain because of privacy and ethical con-
cerns. As a consequence, most researchers who tackled
the problem of establishing a comprehensive human-affect
expression database used a setup that is rather far from the
natural setup [133]: a posed, lab-based, expression-oriented,
open-recording, and emotion-purpose methodology.

5.6. Evaluation

Evaluation is a very important issue in the design of
multimodal systems. Here, we outline the most important
features that could be used as measures in the evaluation
of various types of adaptive MMHCI systems, namely effi-

ciency, quality, user satisfaction, and predictive accuracy.
People typically invoke computational decision aids
because they expect the system will help them accomplish
their tasks more rapidly and with less effort than they do
on their own. This makes efficiency an important measure
to use in evaluating adaptive systems. One natural measure
of efficiency is the time the user takes to accomplish his
task. Another facet is the effort the user must exert to make
a decision or solve a problem. In this case, the measure
would be the number of user actions or commands that
take place during the solving of a problem.

Another main reason the users turn to MMHCI systems
is to improve the quality of solutions of their task. As with
efficiency, there are several ways in which one can define
the notion of quality or accuracy of the system. For exam-
ple, if there is a certain object the user wants to find then
the success of finding it constitutes an objective measure
of quality. However, it is clear that in some cases it is nec-
essary to rely on a separate measure of user satisfaction to
determine the quality of the system’s behavior. One way to
achieve this is to present each user with a questionnaire
that asks about his subjective experience. Another measure
of user’s satisfaction involves giving the user some control
over certain features of the system. If the user turns the sys-
tem’s advisory capability off or disables its personalization
module, one can then conclude that the user has not been
satisfied by his experience with these features.

Since many adaptive system user models make predic-
tions about the user’s responses, it is natural to measure
the predictive accuracy to determine the success of a system.
Although this measure can be a useful analytical tool for
understanding the details of the system’s behavior, it does
not necessarily reflect the overall efficiency or quality of
solutions, which should be the main concern.

6. Applications

Throughout the paper we have discussed techniques in a
wide variety of application scenarios, including video con-
ferencing and remote collaboration, intelligent homes, and
driver monitoring. The types of modalities used, as well as
the integration models vary widely from application to
application. The literature on applications that use
MMHCI is vast and could well deserve a survey of its
own [74]. Therefore, we do not attempt a complete survey
of MMHCI applications. Instead we give a general over-
view of some of the major areas (also see [84]) by focusing
on specific application areas in which interesting progress
has been made. In particular, we focus on the areas below.

6.1. Ambient spaces

Computing is expanding beyond the desktop, integrat-
ing with everyday objects in a variety of scenarios. As
our discussions show, this implies that the model of user
interface in which a person sits in front of a computer is
no longer the only model [5,68]. One of the implications
of this is that the actions or events to be recognized by
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the ‘‘interface’’ are not necessarily explicit commands. In
smart conference room applications, for instance, multi-
modal analysis has been applied mostly for video indexing
[102] (see [139] and [55] for social analysis applications).
Although such approaches are not meant to be used in
real-time, they are useful in investigating how multiple
modalities can be fused in interpreting communication. It
is easy to foresee applications in which ‘‘smart meeting
rooms’’ actually react to multimodal actions in the same
way that intelligent homes should [105]. Projects in the
video domain include MVIEWS [30], a system for annotat-
ing, indexing, extracting, and disseminating information
from video streams for surveillance and intelligence appli-
cations. An analyst watching one or more live video feeds
is able to use pen and voice to annotate the events taking
place. The annotation streams are indexed by speech and
gesture recognition technologies for later retrieval, and
can be quickly scanned using a timeline interface, then
played back during review of the film. Pen and speech
can also be used to command various aspects of the system,
including image processing functions, with multimodal
utterances such as ‘‘Track this’’ or ‘‘If any object enters this
area, notify me immediately.’’ In [20], the authors present a
multimodal attentive cookbook, which combines eye track-
ing and speech. In [29], human interaction events are
detected in a nursing home environment. The authors of
[91] use multimodal input in a smart home environment
and the authors of [2] propose a design studio that uses
multimodal input. Interestingly, techniques used for video
analysis can also be used in the context of MMHCI. Exam-
ples include human activity recognition [8,17,138], work in
the context of meeting video analysis [28,102], event detec-
tion [53], surveillance [65], and others. One of the main dif-
ferences between some of the approaches developed for
video analysis and techniques for MMHCI are the require-
ments in processing speed. Nonetheless, much of what can
be learned from video analysis applications can be applied
in the context of MMHCI.

6.2. Mobile/wearable

The recent drop in costs of hardware has led to an
explosion in the availability of mobile computing devices.
One of the major challenges is that while devices such as
PDAs and mobile phones have become smaller and more
powerful, there has been little progress in developing effec-
tive interfaces to access the increased computational and
media resources available in such devices. Mobile devices,
as well as wearable devices, constitute a very important
area of opportunity for research in MMHCI because natu-
ral interaction with such devices can be crucial in overcom-
ing the limitations of current interfaces. Several researchers
have recognized this, and many projects exist on mobile
and wearable MMHCI applications. The authors of [42]
integrate pen and speech input for PDA interaction. The
use of computer vision, however, is also being explored
in projects such as [51], in which a tourist can take photo-
graphs of a site to obtain additional information about the
site. In [22], the authors present two techniques (head tilt
and gesture with audio feedback) to control a mobile
device. The authors of [85] use MMHCI to augment
human memory: RFID tags are used in combination with
a head mounted display and a camera to capture video
and information of all the objects the user touches. The
authors of [193] combine eye tracking with video, head
tracking, and hand motion information. The authors of
[137] use eye tracking to understand eye-hand coordination
in natural tasks, and in [38] eye tracking is used in a video
blogging application, a very interesting area.

6.3. Virtual environments

Virtual reality has been a very active research area at the
crossroads of computer graphics, computer vision, and
human–computer interaction. One of the major difficulties
of VR systems is the HCI component, and many research-
ers are currently exploring the use of MMHCI to enhance
the user experience. One reason MMHCI is very attractive
in VR environments is that it helps disambiguate commu-
nication between users and the machine (in some cases vir-
tual characters, the virtual environment, or even other
users represented by virtual characters [113]). The authors
of [95] integrate speech and gesture recognition for interac-
tion in an immersive environment. Speech and gesture
inputs are also used in [129], where the user communicates
with an autonomous farmer.

6.4. Art

Perhaps one of the most exciting application areas of
MMHCI is art. Vision techniques can be used to allow
audience participation [101] and influence a performance.
In [184], the authors use multiple modalities (video, audio,
pressure sensors) to output different ‘‘emotional states’’ for
Ada, an intelligent space that responds to multimodal
input from its visitors. In [94], a wearable camera pointing
at the wearer’s mouth interprets mouth gestures to generate
MIDI sounds (so a musician can play other instruments
while generating sounds by moving his mouth). In [134],
limb movements are tracked to generate music. MMHCI
can also be used in museums to augment exhibitions [170].

6.5. Users with disabilities

People with disabilities can benefit greatly from
MMHCI technologies [87]. The authors of [167] propose
a component-based smart wheel chair system and discuss
other approaches that integrate various types of sensors
(not only vision). The authors of [87] also present a wheel
chair navigation system. In [41], computer vision is used to
interpret facial gestures for wheel chair navigation. The
authors of [151] introduce a system for presenting digital
pictures non-visually (multimodal output), and the tech-
niques in [58] can be used for interaction using only eye
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blinks and eye brow movements. Some of the approaches
in other application areas (e.g., [22]) could also be benefi-
cial for people with disabilities—MMHCI has great poten-
tial in making computers and other resources accessible to
people with disabilities.

6.6. Public and private spaces

In this category we place applications in which interfaces
are implemented to access devices used in public or private
spaces. One attractive example of implementation in public
spaces is the use of MMHCI in information kiosks
[79,147]. In some ways these are ideal and challenging
applications for natural multimodal interaction: the kiosks
are often intended to be used by a wide audience, thus there
may be few assumptions about the types of users of the sys-
tem. The range of tasks may also be wide, providing rich
opportunities for MMHCI. On the other hand, we have
MMHCI applications in private spaces. One interesting
area is that of implementation in vehicles. The authors of
[172,168], and [77] present various approaches to monitor
vehicle occupants, including the driver. This is an interest-
ing application area due to the constraints: since the driver
must focus on the driving task, traditional computer inter-
faces (e.g., GUIs) are not suitable. Thus, it is an important
area of opportunity for MMHCI research, particularly
because depending on the particular deployment, vehicle
interfaces can be considered safety-critical.

6.7. Other

Other applications include biometrics [150,135], surveil-
lance, remote collaboration [52], gaming and entertainment
[153], education, and robotics ([50] gives a comprehensive
review of socially active robots). MMHCI can also play
an important role in safety-critical applications (e.g., med-
icine, military [31,34], etc.) and in situations in which a lot
of information from multiple sources has to be viewed in
short periods of time. A good example of this is crisis man-
agement [162].

Although not all of the specific applications mentioned
above have a strong vision component (or a strong multi-
modal component), they do highlight some of the major
application areas for MMHCI (see [84] for a different
classification). Indeed, the range of application areas for
MMHCI touches on every aspect of computing, and as
computing becomes more ubiquitous, practically every
aspect of human interaction with objects, the environment,
and human–human interaction (e.g., remote collaboration,
etc.) will make use of MMHCI techniques.

Trends in computing suggest that MMHCI will alleviate
many of the problems with existing HCI paradigms. None-
theless, many challenges lay ahead in making widespread
use of MMHCI a reality, even in the most constrained
applications. Robustness and accuracy are important,
and even though computational power continues to
increase at lower costs, the limitations on efficient process-
ing of multiple modalities remains strong. Therefore, more
research is needed not only on improving separate process-
ing of each modality, but also in efficiently integrating the
outputs of multiple processors so that responses can be
generated fast enough to make them suitable in their appli-
cation domains. A factor which cannot be ignored, in con-
sidering MMHCI applications, is the adaptability of the
user to MMHCI paradigms. Although MMCHI promises
natural interaction, at least for the foreseeable future, users
will have to make efforts to use MMHCI systems properly.
Although MMHCI may not replace WIMP3-based graph-
ical user interfaces in the near future [178], the promise of
using MMHCI in many applications makes this a very
exciting research area full of challenges and opportunities
for researchers in various fields. Given the importance of
Vision in human communication, we foresee Computer
Vision as one of the driving technologies for MMHCI
applications [175].
7. Conclusion

We have highlighted major vision approaches for
multimodal human–computer interaction. We discussed
techniques for large-scale body movement, gesture recogni-
tion, and gaze detection. We discussed facial expression
recognition, emotion analysis from audio, user and task
modeling, multimodal fusion, and a variety of emerging
applications.

One of the major conclusions of this survey is that most
researchers process each channel (visual, audio) indepen-
dently, and multimodal fusion is still in its infancy. On
one hand, the whole question of how much information
is conveyed by ‘‘separate’’ channels may inevitably be mis-
leading. There is no evidence that individuals in actual
social interaction selectively attend to another person’s
face, body, gesture, or speech, or that the information con-
veyed by these channels is simply additive. The central
mechanisms directing behavior cut across channels, so that,
for example, certain aspects of face, body, and speech are
more spontaneous and others are more closely monitored
and controlled. It might well be that observers selectively
attend not to a particular channel but to a particular type
of information (e.g., cues to emotion, deception, or cogni-
tive activity), which may be available within several chan-
nels. No investigator has yet explored this possibility or
the possibility that different individuals may typically
attend to different types of information (see [122] for a
recent study on this topic).

Another important issue is the affective aspect of com-
munication that should be considered when designing an
MMHCI system. Emotion modulates almost all modes of
human communication—facial expression, gestures,
posture, tone of voice [35], choice of words, respiration,
skin temperature and clamminess, etc. Emotions can
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significantly change the message: often it is not what was
said that is most important, but how it was said. As noted
by Picard [140] affect recognition is most likely to be accu-
rate when it combines multiple modalities, information
about the user’s context, situation, goal, and preferences.
A combination of low-level features, high-level reasoning,
and natural language processing is likely to provide the
best emotion inference in the context of MMHCI. Consid-
ering all these aspects, multimodal context-sensitive
human–computer interaction is likely to become the single
most widespread research topic of the artificial intelligence
research community [138]. Advances in this area could
change not only how professionals practice computing,
but also how mass consumers interact with technology.
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